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Chapter 1

Introduction

Introduction

This report details the accomplishments of the “Building More Powerful Less Expen-
sive Supercomputers Using Processing-In-Memory (PIM)” LDRD (“PIM LDRD”,
number 105809) for FY07-FY09.

Latency dominates all levels of supercomputer design. Within a node, increasing
memory latency, relative to processor cycle time, limits CPU performance. Be-
tween nodes, the same increase in relative latency impacts scalability. Processing-In-
Memory (PIM) is an architecture that directly addresses this problem using enhanced
chip fabrication technology and machine organization. PIMs combine high-speed logic
and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate
latency by performing useful work during memory transactions. This work examines
the potential of PIM-based architectures to support mission critical Sandia applica-
tions and an emerging class of more data intensive informatics applications.

This work has resulted in a stronger architecture/implementation collaboration be-
tween 1400 and 1700. Additionally, key technology components have impacted vendor
roadmaps, and we are in the process of pursuing these new collaborations. This work
has the potential to impact future supercomputer design and construction, reducing
power and increasing performance.

This final report is organized as follow: this summary chapter discusses the impact
of the project (Section 1), provides an enumeration of publications and other public
discussion of the work (Section 1), and concludes with a discussion of future work and
impact from the project (Section 1). The appendix contains reprints of the refereed
publications resulting from this work.

Impact

This LDRD has helped to establish a processor and memory architecture research
focus within the lab, facilitated collaboration between 1400 and 1700, and served as
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an intellectual basis for a large-scale proposal e↵ort to DARPA targeted at the end
of the Fall of 2009. A summary of impact is:

• A collaboration with Micron was started to examine alternatives for imple-
menting PIM-based computers, with the focus now being on 3D integration of
DRAM and logic. Sandia’s Microelectronics center has deep experience in 3DI,
and it has allowed us to begin post-LDRD collaborating with industry on both
near- and long-term supercomputers.

• We have simulated a set of real application and application kernels, particularly
those from the Mantevo LDRD project and demonstrated that those applica-
tions are memory bound in performance.

• We have identified processor ine�ciencies related to the large data sets in HPC
applications and the fact that commodity processors are not designed to address
them.

• We have quantitatively demonstrated that memory latency, not memory band-
width limits performance.

• We have developed a multithreaded programming model, qthreads, that in-
creased on-node application concurrency. Given that increased concurrency
lowers e↵ective latency, this is a key method for creating future memory la-
tency tolerant systems.

• We have enhanced the SST simulator to include improved memory models and
provide better PIM processor simulations. This can be leveraged by academic
and industry collaborators in the future.

• We have published six refereed publications and given three invited talks related
to the LDRD, and expect future results to provide impact to two additional
papers in the Fall.

Publications, Presentations, and Press

This section enumerates public presentation of our work.

Refereed Publications

• Wheeler, Kyle, Douglas Thain, and Richard Murphy, Portable Performance
from Workstation to Supercomputer: Distributing Data Structures with Qthreads,
Proceedings of the First Workshop on Programming Models for Emerging Ar-
chitectures, 2009.
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• Barrett, Brian W., and Jonathan W. Berry, Richard C. Murphy, and Kyle B.
Wheeler, Implementing a Portable Multi-threaded Graph Library: the MTGL
on Qthreads, International Parallel and Distributed Processing Symposium 2009
(IPDPS09), Rome, Italy, Pages 1–8, May 2009.

• Murphy, Richard C., DOE’s Institute for Advanced Architecture and Algo-
rithms: an Application-Driven Approach, Journal of Physics Conference Series
180(2009), 012044.

• Wheeler, Kyle, Richard C. Murphy, and Douglas Thain, Qthreads: An API for
Programming with Millions of Lightweight Threads in the Proceedings of the
Workshop on Multithreaded Architectures and Applications, Miami, FL, 2008.

• Murphy, Richard C. On the E↵ects of Memory Latency and Bandwidth on
Supercomputer Application Performance in the IEEE International Symposium
on Workload Characterization 2007 (IISWC07), Boston, MA, September 27-29,
2007.

• Murphy, Richard C. and Peter M. Kogge, On the Memory Access Patterns of
Supercomputer Applications: Benchmark Selection and Its Implications, IEEE
Transactions on Computers 56(7): 937-945, July 2007.

Invited Talks

• DOE’s Institute for Advanced Architecture and Algorithms: an Application-
Driven Approach, SciDAC 2009, June 14-18, San Diego, CA.

• Data Movement Dominates: An Application-Centric View of High Performance
Interconnects, HSD 2009 20th Annual Workshop on Interconnects within High
Speed Digital Systems, May 3-6, 2009, Santa Fe, NM.

• Can We Continue to Build Supercomputers Out of Processors Optimized for
Laptops?, 13th Workshop on Distributed Supercomputing (SOS 13), March
9-12, 2009, Hilton Head, SC.

Coverage in the Press

• Moore, Samuel K., “Multicore Is Bad News for Supercomputers”, IEEE Spec-
trum, November 2008.

Workshops

This LDRD also contributed to the ideas behind the CSRI Workshop Memory Op-
portunities for High Performance Computing (MOHPC), January 9-10, 2008.
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Future Work

We plan to continue to pursue three key points of impact from this work:

1. Work with Micron on advanced memory technologies for near-term (2014) and
Exascale (2017) supercomputers will continue, and expand to include both
DRAM and nonvolatile memory. This work will continue through the DOE In-
stitute for Advanced Architecture and Algorithms (IAA), and the Sandia/Los
Alamos Alliance for Computing at Extreme Scale (ACES). We believe impact
can be shown in our Trinity supercomputer in the 2014 time-frame. This work
has also generated interest from Other Government Agency (OGA) activities.

2. The qthreads programming model will be expanded and serve as the basis for
an experimental on-node programming model for future machines. We ex-
pect qthreads will have to be expanded to include additional communication
and synchronization primitives, particularly transactional memory, but that
real applications could be targeted to a qthreads environment for evaluation
purposes in FY10 and FY11.

3. The X-caliber strawman architecture, generated from this LDRD, will serve as
the basis for a Sandia-led proposal to the DARPA UHPC program. We expect
a BAA to be issued in the Fall of 2009, and have formed a multi-institutional
team including industry and academia.
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Appendix A

Reproduction of Referred Papers

The following pages reproduce the refereed publications enumerated in Section 1.
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On The Memory Access Patterns of Supercomputer
Applications: Benchmark Selection and Its

Implications
Richard C. Murphy†, Member, IEEE, Peter M. Kogge, Fellow, IEEE

Abstract— This paper compares the SPEC Integer and Floating
Point suites to a set of real-world applications for high perfor-
mance computing at Sandia National Laboratories. These appli-
cations focus on the high-end scientific and engineering domains,
however the techniques presented in this paper are applicable to
any application domain. The applications are compared in terms
of three memory properties: first, temporal locality (or reuse over
time); second, spatial locality (or the use of data “near” data
that has already been accessed); and third, data intensiveness
(or the number of unique bytes the application accesses). The
results show that real world applications exhibit significantly
less spatial locality, often exhibit less temporal locality, and have
much larger data sets than the SPEC benchmark suite. They
further quantitatively demonstrates the memory properties of
real supercomputing applications.

Index Terms— B.8.2 Performance Analysis and Design Aids,
C.1.0 General, C.4.c Measurement techniques, C.4.g Measure-
ment, evaluation, modeling, simulation of multiple-processor
systems

I. INTRODUCTION

The selection of benchmarks relevant to the supercomputing
community is challenging at best. In particular, there is a
discrepancy between the workloads that are most extensively
studied by the computer architecture community, and the codes
relevant to high performance computing. This paper exam-
ines these differences quantitatively in terms of the memory
characteristics of a set of a real applications from the high-
end science and engineering domain as they compare to the
SPEC CPU2000 benchmark suite, and more general High
Performance Computing (HPC) benchmarks. The purpose of
this paper is two-fold: first to demonstrate what general
memory characteristics the computer architecture community
should look for when identifying benchmarks relevant to HPC
(and how they differ from SPEC); and second, to quantitatively
explain application’s memory characteristics to the HPC com-
munity, which often relies on intuition when discussing mem-
ory locality. Finally, although most studies discuss temporal
and spatial locality when referring to memory performance,
this work introduces a new measure data intensiveness that
serves as the biggest differentiator in application properties
between real applications and benchmarks. These techniques
can be applied to any architecture-independent comparison
of any benchmark or application suite, and this study could

†Richard Murphy is at Sandia National Laboratories. Sandia is a mul-
tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

be repeated for other markets of interest. The three key
characteristics of the application are:

1) Temporal Locality: the reuse over time of a data item
from memory;

2) Spatial Locality: the use of data items in memory near
other items that have already been used; and,

3) Data Intensiveness: the amount of unique data the ap-
plication accesses.

Quantifying each of these three measurements is extremely
difficult (see Section IV and Section II). Beyond quantitatively
defining the measurements, there are two fundamental prob-
lems: first, choosing the applications to measure; and second,
performing the measurement in an architecture-independent
fashion that allows general conclusions to be drawn about the
application rather than specific observations of the applica-
tions performance on one particular architecture. This paper
addresses the former problem by using a suite of real codes
that consume significant compute time at Sandia National
Laboratories; and it addresses the latter by defining the metrics
to be orthogonal to each other, and measuring them in an
architecture independent fashion. Consequently, these results
(and the techniques used to generate them) are applicable for
comparing any set of benchmarks or applications memory
properties without regard to how those properties perform on
any particular architectural implementation.

The remainder of this paper is organized as follows: Section
II examines the extensive related work in measuring spatial
and temporal locality, as well as application’s working sets;
Section III describes the Sandia integer and floating point ap-
plications, as well as the SPEC suite; Section IV quantitatively
defines the measures of temporal locality, spatial locality,
and data intensiveness; Section V compares the application’s
properties; Section VI presents the results; and Section VII
ends with the conclusions.

II. RELATED WORK

Beyond the somewhat intuitive definitions of spatial and
temporal locality provided in computer architecture text books
[14], [27], there have been numerous attempts to quantitatively
define spatial and temporal locality [37]. Early research in
computer architecture [7] examined working sets, or the data
actively being used by a program, in the context of paging.
That work focused on efficiently capturing the working set in
limited core memory, and has been an active area of research
[9], [31], [35].
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More recent work is oriented towards addressing the mem-
ory wall. It examines the spatial and temporal locality prop-
erties of cache accesses, and represent modern hierarchical
memory structures [6], [10], [32]. Compiler writers have also
extensively examined the locality properties of applications in
the context of code generation and optimization [11], [12].

In addition to definitions that are continuously refined,
the methodology for modeling and measuring the working
set has evolved continuously. Early analytical models were
validated by small experiments [7], [9], [31], [35], while
modern techniques have focused on the use of trace-based
analysis and full system simulation [18], [21], [32].

Because of its preeminence in computer architecture bench-
marks, the SPEC suite has been extensively analyzed [12],
[18], [19], [21], [33], as have other relevant workloads such
as database and OLTP applications [3], [6], [20].

Finally, the construction of specialized benchmarks such
as the HPC Challenge RandomAccess benchmark [8] or the
STREAM benchmark [22] is specifically to address memory
performance. Real world applications on a number of plat-
forms have been studied extensively [26], [36].

III. APPLICATIONS AND BENCHMARKS

This section describes a set of floating point and integer
applications from Sandia National Laboratories, as well as
the SPEC Floating Point and Integer benchmark suites to
which they will be compared. The HPC Challenge RandomAc-
cess benchmark, which measures random memory accesses
in GUPS (Giga-Updates Per Second), and the STREAM
benchmark, which measures effective bandwidth, are used as
comparison points to show very basic memory characteristics.
Finally, LINPACK, the standard supercomputing benchmark
used to generate the Top500 list is included for comparison.
In the case of MPI codes, the user portion of MPI calls is
included in the trace.

A. Floating Point Benchmarks
Real scientific applications tend to be significantly different

from common processor benchmarks, such as the SPEC suite.
Their datasets are larger, the applications themselves are more
complex, and they are designed to run on large-scale machines.
The following benchmarks were selected to represent critical
problems in supercomputing seen by the largest scale deploy-
ments in the United States. The input sets were all chosen to be
representative of real problems, or, when they are benchmark
problems, are the typical performance evaluation benchmarks
used during new system deployment. Two of the codes are
benchmarks, sPPM (see Section III-A.5), which is part of the
ASCI 7x benchmark suite (that set requirements for the ASCI
Purple supercomputer), and Cube3 which is used as a simple
driver for the Trilinos linear algebra package. The sPPM code
is a slightly simplified version of a real-world problem, and,
in the case of Trilinos, linear algebra is so fundamental to
many areas of scientific computing that studying core kernels
is significantly important.

All of the codes are written for MPPs using the MPI
programming model, but, for the purposes of this study, were

traced as a single node run of the application. Even without the
use of MPI the codes are structured to be MPI-scalable. Other
benchmarking (both performance register and trace-based) has
shown that the local memory access patterns for a single node
of the application and serial runs are substantially the same.

1) LAMMPS: LAMMPS represents a classic molecular
dynamics simulation designed to represent systems at the
atomic or molecular level [28], [29]. The program is used
to simulate proteins in solution, liquid crystals, polymers,
zeolites, and simple Lenard-Jones systems. The version under
study is written in C++, and two significant inputs were chosen
for analysis:

• Lenard Jones Mixture: This input simulated a 2048 atom
system consisting of three different types;

• Chain: simulates 32000 atoms and 31680 bonds.
LAMMPS consists of approximately 30,000 lines of code.
2) CTH: CTH is a multi-material, large deformation, strong

shock wave, solid mechanics code developed over the last
three decades at Sandia National Laboratories [16]. CTH
has models for multi-phase, elastic viscoplastic, porous and
explosive materials. CTH supports multiple types of meshes:

• Three-dimensional rectangular meshes;
• two-dimensional rectangular and cylindrical meshes; and
• one-dimensional rectilinear, cylindrical, and spherical

meshes.
It uses second-order accurate numerical methods to reduce

dispersion and dissipation and produce accurate, efficient
results. CTH is used extensively within the Department of En-
ergy laboratory complexes for studying armor/anti-armor inter-
actions, warhead design, high explosive initiation physics and
weapons safety issues. It consists of approximately 500,000
lines of Fortran and C.

CTH has two modes of operation: with or without adaptive
mesh refinement (AMR)1. Adaptive mesh refinement changes
the application properties significantly and is useful for only
certain types of input problems. One AMR problem and two
non-AMR problems were chosen for analysis.

Three input sets were examined:
• 2-Gas: The input set uses an 80�80�80 mesh to simulate

two gases intersecting on a 45 degree plane. This is the
most “benchmark-like” (e.g., simple) input set, and is
included to better understand how representative it is of
real problems.

• Explosively Formed Projectile (EFP): The simulation
represents a simple Explosively Formed Projectile (EFP)
that was designed by Sandia National Laboratories staff.
The original design was a combined experimental and
modeling activity where design changes were evaluated
computationally before hardware was fabricated for test-
ing. The design features a concave copper liner that is
formed into an effective fragment by the focusing of
shock waves from the detonation of the high explosive.

1AMR typically uses graph partitioning as part of the refinement, two
algorithms for which are part of the integer benchmarks under study. One
of the most interesting results of including a code like CTH in a “benchmark
suite” is its complexity.
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The measured fragment size, shape, and velocity is accu-
rately (within 5%) modeled by CTH.

• CuSt AMR: This input problem simulates a 4.52 km/s
impact of a 4 mm copper ball on a steel plate at a 90
degree angle. Adaptive mesh refinement is used in this
problem.

3) Cube3: Cube3 is meant to be a generic linear solver
and drives the Trilinos [15] frameworks for parallel linear
and eigensolvers. Cube3 mimics a finite element analysis
problem by creating a beam of hexagonal elements, then
assembling and solving a linear system. The problem can
be varied by width, depth, and degrees of freedom (e.g.,
temperature, pressure, velocity, or whatever physical modeling
the problem is meant to represent). The physical problem
is three dimensional. The number of equations in the linear
system is equal to the number of nodes in the mesh multiplied
by the degrees of freedom at each node. There are two variants
based on how the sparse matrices are stored:

• CRS: a 55x55 sparse compressed row system; and
• VBR: a 32x16 variable block row system.
These systems were chosen to represent a large system of

equations.
4) MPSalsa: MPSalsa performs high resolution 3D simu-

lations of reacting flow problems [34]. These problems require
both fluid flow and chemical kinetics modeling.

5) sPPM: The sPPM [5] benchmark is part of the ASCI
Purple benchmark suite as well as the 7� application list for
ASCI Red Storm. It solves a 3D gas dynamics problem on
a uniform Cartesian mesh using a simplified version of the
PPM (Piecewise Parabolic Method) code. The hydrodynamics
algorithm requires three separate sweeps through the mesh
per time step. Each sweep requires approximately 680 flops
to update the state variables for each cell. The sPPM code
contains over 4000 lines of mixed Fortran 77 and C routines.
The problem solved by sPPM involves a simple, but strong
(about Mach 5) shock propagating through a gas with a density
discontinuity.

B. Integer Benchmarks
While floating point applications represent the classic su-

percomputing workload, problems in discrete mathematics,
particularly graph theory, are becoming increasingly preva-
lent. Perhaps most significant of these are fundamental graph
theory algorithms. These routines are important in the fields
of proteomics, genomics, data mining, pattern matching and
computational geometry (particularly as applied to medicine).
Furthermore, their performance emphasizes the critical need to
address the von Neumann bottleneck in a novel way. The data
structures in question are very large, sparse, and referenced
indirectly (e.g., through pointers) rather than as regular arrays.
Despite their vital importance, these applications are signifi-
cantly underrepresented in computer architecture research, and
there is currently little joint work between architects and graph
algorithms developers.

In general, the integer codes are more “benchmark” prob-
lems (in the sense that they use non-production input sets),
heavily weighted towards graph theory codes, than are the
floating point benchmarks.

1) Graph Partitioning: There are two large-scale graph
partitioning heuristics included here: Chaco [13] and Metis
[17]. Graph partitioning is used extensively in automation for
VLSI circuit design, static and dynamic load balancing on
parallel machines, and numerous other applications. The input
set in this work consists of a 143,437 vertex and 409,593
edge graph to be partitioned into 1,024 balanced parts (with
minimum edge cut between partitions).

2) Depth First Search (DFS): DFS implements a Depth
First Search on a graph with 2,097,152 vertices and 25,690,112
edges. DFS is used extensively in higher-level algorithms,
including identifying connected components, tree and cycle
detection, solving the two-coloring problem, finding Articula-
tion Vertices (e.g., the vertex in a connected graph that, when
deleted, will cause the graph to become a disconnected graph),
and topological sorting.

3) Shortest Path: Shortest Path computes the shortest path
on a graph of 1,048,576 vertices and 7,864,320 edges, and in-
corporates a breadth first search. Extensive applications exist in
real world path planning and networking and communications.

4) Isomorphism: The graph isomorphism problem deter-
mines whether or not two graphs have the same shape or
structure. Two graphs are isomorphic if there exists a one-
to-one mapping between vertices and edges in the graph
(independent of how those vertices and edges are labeled).
The problem under study confirms that two graphs of 250,000
vertices and 10 million edges are isomorphic. There are
numerous applications in finding similarity (particularly, sub-
graph isomorphism) and relationships between two differently
labeled graphs.

5) BLAST: The Basic Local Alignment Search Tool
(BLAST) [1] is the most heavily used method for quickly
searching nucleotide and protein databases in biology. The
algorithm attempts to find both local and global alignment
of DNA nucleotides, as well identifying regions of similarity
embedded in two proteins. BLAST is implemented as a
dynamic programming algorithm.

The input sequence chosen was obtained by training a
hidden Markov model on approximately 15 examples of
piggyBac transposons from various organisms. This model was
used to search the newly assembled aedes aegypti genome (a
mosquito). The best result from this search was the sequence
used in the blast search. The target sequence obtained was
blasted against the entire aedes aegypti sequence to identify
other genes that could be piggyBac transposons, and to double
check that the subsequence is actually a transposon.

6) zChaff: The zChaff program implements the Chaff
heuristic [23] for finding solutions to the Boolean satisfiability
problem. A formula in propositional logic is satisfiable if there
exists an assignment of truth values to each of its variables
that will make the formula true. Satisfiability is critical in
circuit validation, software validation, theorem proving, model
analysis and verification, and path planning. The zChaff input
comes from circuit verification and consists of 1,534 Boolean
variables, 132,295 clauses with five instances, that are all
satisfiable.
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TABLE I
SPEC CPU2000 INTEGER SUITE

Benchmark Lang. Description
164.gzip C Data Compression
175.vpr C FPGA Placement and Routing
176.gcc C GNU C Compiler
181.mcf C Combinatorial Optimization
186.crafty C Chess
197.parser C Word Processing
252.eon C++ Visualization
253.perlbmk C PERL
254.gap C Group Theory
255.vortex C Object Oriented Database
256.bzip2 C Data compression
300.twolf C VLSI Placement and Routing

C. SPEC

The SPEC CPU2000 suite is by far the most currently
studied benchmark suite for processor performance [4]. This
work uses both the SPEC-Integer and SPEC-FP components
of the suite, as summarized in Tables I and II respectively, as
its baseline comparison for benchmark evaluation.

1) SPEC Integer Benchmarks: The SPEC Integer Suite,
summarized in Table I, is by far the most studied half of the
SPEC suite. It is meant to generally represent workstation class
problems. Compiling (176.gcc), compression (164.gzip and
256.bzip2), and systems administration tasks (253.perlbmk)
have many input sets in the suite. These tasks tend to be some-
what streaming on average (the perl benchmarks, in particular,
perform a lot of line-by-line processing of data files). The
more scientific and engineering oriented benchmarks (175.vpr,
181.mcf, 252.eon, 254.gap, 255.vortex, and 300.twolf) are
somewhat more comparable to the Sandia integer benchmark
suite. However selectively choosing benchmarks from SPEC
produces generally less accurate comparisons than using the
entire suite (although it would lessen the computational re-
quirements for analysis significantly).

It should be noted that the SPEC suite is specifically
designed to emphasize computational rather then memory
performance. Indeed, other benchmark suites, such as the
STREAM benchmark or RandomAccess focus much more
extensively on memory performance. However, given the
nature of the memory wall, what is important is a mix of
the two. SPEC, in this work, represents the baseline only
because it is, architecturally, the most studied benchmark
suite. Indeed, a benchmark such as RandomAccess would
undoubtedly overemphasize the memory performance at the
expense of computation, as compared to the real-world codes
in the Sandia suite.

2) SPEC Floating Point Benchmarks: The SPEC Floating
Point suite is summarized in Table II, and primarily represents
scientific applications. At first glance, these applications would
appear very similar to the Sandia Floating Point suite; however
the scale of the applications (in terms of execution time, code
complexity, and input set size) differs significantly.

TABLE II
SPEC FLOATING POINT SUITE

Benchmark Lang Description
168.wupwise F77 Quantum Chromodynamics
171.swim F77 Shallow Water modeling
172.mgrid F77 Multi-grid Solver
173.applu F77 Parabolic PDEs
177.mesa C 3d Graphics
178.galgel F90 Comp. Fluid Dynamics
179.art C Adaptive Resonance Theory
183.equake C Seismic Wave Propagation
187.facerec F90 Face Recognition
188.ammp C Computational Chemistry
189.lucas F90 Primary Number Testing
191.fma3d F90 Finite Element Crash Simulation
200.sixtrack F77 High Energy Physics Accelerator
301.apsi F77 Pollutant Distribution

D. RandomAccess
The RandomAccess benchmarks is part of the HPC Chal-

lenge suite [8] and measures the performance of the memory
system by updating random entries in a very large table
that is unlikely to be cached. This benchmark is specifically
designed to exhibit very low spatial and temporal locality,
and a very large data set (as the table update involves very
little computation). It represents the most extreme of memory
intensive codes, and is used as a comparison point to the
benchmarks and real applications in this work.

E. STREAM
The STREAM benchmark [22] is used to measure sustain-

able bandwidth on a platform and does so via four simple
operations performed non-contiguously on three large arrays:

• Copy: a(i) = b(i)
• Scale: a(i) = q � b(i)
• Sum: a(i) = b(i) + c(i)
• Triad: a(i) = b(i) + q � c(i)
To measure the performance of main memory, the STREAM

rule is that the data size is scaled to four times the size of
the platform’s L2 cache. Because this work is focused on
architecture independent numbers, the each array size was
scaled to 32MB, which is reasonably large for a workstation.

IV. METHODOLOGY AND METRICS

This work evaluates the temporal and spatial locality char-
acteristics of applications separately. This section describes
the methodology used in this work and formally defines
the temporal locality, spatial locality, and data intensiveness
measures.

A. Methodology
The applications in this were each traced using the Amber

instruction trace generator [2] for the PowerPC. Trace files
containing 4 billion sequential instructions were generated by
identifying and capturing each instruction executed in critical
sections of the program. The starting point for each trace was
chosen using a combination of performance register profiling
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of the memory system, code reading, and, in the case of SPEC,
accumulated knowledge of good sampling points. The advice
of application experts was also used for the Sandia codes. The
traces typically represent multiple executions of the main loop
(multiple time steps for the Sandia floating point benchmarks).
These traces have been used extensively in other work, and are
well understood [25].

B. Temporal Locality

The application’s temporal working set describes its tem-
poral locality. As in prior work [25], a temporal working
set of size N is modeled as an N byte, fully associative,
true least recently used cache with native machine word
sized blocks. The hit rate of that cache is used to describe
the effectiveness of the fixed-size temporal working set at
capturing the application’s data set. The same work found
that the greatest differentiation between conventional and
supercomputer applications occurred in the 32KB-64KB level
one cache sized region of the temporal working set. The
temporal locality in this work is given by a temporal working
set of size 64 KB. The temporal working set is measured over a
long-studied 4 billion instruction trace from the core of each
application. The number of instructions is held constant for
each application. This puts the much shorter running SPEC
benchmark suite on comparable footing to the longer running
supercomputing applications.

It should be noted that there is significant latitude in the
choice of temporal working set size. The choice of a level
one cache sized working set is given for two reasons: first,
it has been demonstrated to offer the greatest differentiation
of applications between the floating point benchmarks in this
suite and SPEC FP; and second, while there is no direct map to
a conventionally constructed L1 cache, the L1 hit rate strongly
impacts performance. There are two other compelling choices
for temporal working set size:

1) Level 2 Cache Sized: in the 1-8 MB region. Arguably,
the hit rate of the cache closest to memory most impacts
performance (given very long memory latencies).

2) Infinite: describes the temporal hit rate required to
capture the application’s total data set size.

Given N memory accesses, H of which hit the cache
described above, the temporal locality is given by: H

N .

C. Spatial Locality

Measuring the spatial locality of an application may be the
most challenging aspect of this work. Significant prior work
has examined it as the application’s stride of memory access.
The critical measurement is how quickly the application con-
sumes all the data presented to it in a cache block. Thus,
given a cache block size, and a fixed interval of instructions,
the spatial locality can be described as the ratio of data the
application actually uses (through a load or store) to the cache
line size. This work uses an instruction interval of 1, 000
instructions, and a cache block size of 64-bytes. For this
work, every 1, 000 instruction window in the application’s
4 billion instruction trace is examined for unique loads and

Fig. 1. An example of temporal locality, spatial locality, and data intensive-
ness.

stores. Those loads and stores are then clustered into 64-byte
blocks, and the ratio of used to unused data in the block is
computed. The block size is chosen as a typical conventional
cache system’s block size. There is much more latitude in
the instruction window size. It must be large enough to allow
for meaningful computation, while being small enough to
report differentiation in the application’s spatial locality. For
example, a window size of the number of instructions in the
application should report that virtually all cache lines are 100%
used. The 1, 000 instruction window was chosen based on prior
experience with the applications [24].

Given U1000 unique bytes accessed in an average interval
of 1,000 instructions that are clustered into L 64-byte cache
lines, the spatial locality is given by U

64L .

D. Data Intensiveness
One critical yet often overlooked metric of an application’s

memory performance is its data intensiveness, or the total
amount of unique data that the application accesses (regardless
of ordering) over a fixed interval of instructions. Over the
course of the entire application, this would be the application’s
memory footprint. This is not fully captured by the measure-
ments given above, and it is nearly impossible to determine
from a cache miss rate. This differs from the application’s
memory footprint because it only includes program data that
is accessed via a load or store (where the memory footprint
would also include program text). Because a cache represents
a single instantiation used to capture an application’s working
set, a high miss rate could be more indicative of the application
accessing a relatively small amount of memory in a temporal
order that is poorly suited to the cache’s parameters, or that
the application exhibits very low spatial locality. It is not nec-
essarily indicative of the application accessing a large data set,
which is critical to supercomputing application performance.
This work presents the data intensiveness as the total number
of unique bytes that the application’s trace accessed over its
4 billion instruction interval.

This is directly measured by counting the total number of
unique bytes accessed over the given interval of 4 billion
instructions. This is the same as the unique bytes measure
given above, except it is measured over a larger interval (U4B).

E. An Example
Figure 1 shows an example instruction sequence. Assuming

that this is the entire sequence under analysis, each of the
metrics given above is computed as follows:
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Temporal Locality: is the hit rate of a fully associa-
tive cache. The first 3 loads in the sequence (of 0xA0000,
0xA0004, and 0xB0000) miss the cache. The final store (to
0xA0000) hits the item in the cache that was loaded 3 memory
references prior. Thus, the temporal locality is:

1 hit

4 memory references
= 0.25

Spatial Locality: is the ratio of used to unused bytes in
a 64-byte cache line. Assuming that each load requests is
32-bits, there are two unique lines requested, 0xA0000 (to
0xA0040), and 0xB0000 (to 0xB0040). Two 32-bit words are
consumed from 0xA0000, and 1 32-bit word from 0xB0000.
The spatial locality is calculated as:

12 consumed bytes

128 requested bytes
= 0.09375

Data Intensiveness: is the total number of unique bytes
consumed by the stream. In this case, 3 unique 32-bit words
are requested, for a total of 12 bytes.

V. INITIAL OBSERVATIONS OF PROGRAM
CHARACTERISTICS

Fig. 2. Benchmark Suite Mean Instruction Mix

Figure 2 shows the instruction mix breakdown for the
benchmark suites. Of particular importance is that the Sandia
Floating Point applications perform significantly more integer
operations than their SPEC Floating Point counterparts, in
excess of 1.66 times the number of integer operations, in fact.
This is largely due to the complexity of the Sandia applications
(with many configuration operations requiring integer tests,
table look ups requiring integer index calculations, etc.) as
well as their typically more complicated memory addressing
patterns [30]. This is largely due to the complexity of the
algorithm, and the fact that significantly more indirection is
used in memory address calculations. Additionally, in the case

of the floating point applications, although the Sandia applica-
tions perform only about 1.5% more total memory references
than their SPEC-FP counterparts, the Sandia codes perform
11% more loads, and only about 2

3 the number of stores,
indicating that the results produced require more memory
inputs to produce fewer memory outputs. The configuration
complexity can also be seen in that the Sandia codes perform
about 11% more branches than their SPEC counterparts.

In terms of the integer applications, the Sandia codes
perform about 12.8% fewer memory references over the same
number of instructions, however those references are signifi-
cantly harder to capture in a cache. The biggest difference is
that the Sandia Integer codes perform 4.23 times the number
of floating point operations as their SPEC Integer counterparts.
This is explained by the fact that three of the Sandia Integer
benchmarks perform somewhat significant floating point com-
putations.

TABLE III
SANDIA INTEGER APPLICATIONS WITH SIGNIFICANT FLOATING POINT

COMPUTATION

Application Percent Floating Point Instructions
Chaco 15.84%
DFS 14.74%
Isomorphism 13.41%

Table III summarizes the three Sandia Integer Suite ap-
plications with significant floating point work: Chaco, DFS,
and Isomorphism. Their floating point ratios are quite below
the median for SPEC FP (28.69%), but above the Sandia
Floating Point median (10.67%). They are in the integer
category because their primary computation is an integer graph
manipulation, whereas CTH is in the floating point category
even though runs have a lower floating point percentage (a
mean over its three input runs of 6.83%), but the floating
point work is the primary computation. For example, Chaco
is a multilevel partitioner and uses spectral partitioning in its
base case, which requires the computation of an eigenvector
(a floating point operation). However, graph partitioning is
fundamentally a combinatorial algorithm, and consequently in
the integer category. In the case of CTH, which is a floating
point application with a large number of integer operations, it
is a shock physics code. The flops fundamentally represent the
“real work”, and the integer operations can be accounted for by
the complexity of the algorithms, and the large number of table
look-ups employed by CTH to find configuration parameters.
In either case, the SPEC FP suite is significantly more floating
point intensive.

VI. RESULTS

The experimental results given by the metrics from Section
IV are presented below. Each graph depicts the temporal
locality on the X-axis, and the spatial locality on the Y-axis.
The area of each circle on the graph depicts each application’s
relative data intensiveness (or the total amount of unique data
consumed over the instruction stream).

Figure 3 provides the summary results for each suite of
applications, and the RandomAccess memory benchmark.
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Fig. 3. Mean Temporal vs. Spatial Locality and Data Intensiveness for each
benchmark suite.

The Sandia Floating Point suite exhibits approximately 36%
greater spatial locality and nearly 7% less temporal locality
than its SPEC-FP counterpart. The nearness in temporal local-
ity, and increased spatial locality is somewhat surprising when
taken out of context. One would typically expect scientific
applications to be less well structured. The critical data inten-
siveness measure proves the most enlightening. The Sandia
FP suite accesses over 2.6 times the amount of data as SPEC
FP. The data intensiveness is the most important differentiator
between the suites. A larger data set size would reflect signif-
icantly worse performance in any real cache implementation.
Without the additional measure, the applications would appear
more comparable. It should be noted that the increased spatial
locality seen in the Sandia Floating Point applications is
likely because those applications use the MPI programming
model, which generally groups data to be operated upon into a
buffer for transmission over the network (increasing the spatial
locality).

The Sandia integer suite is significantly farther from the
SPEC integer suite in all dimensions. It exhibits close to 30%
less temporal locality, nearly 40% less spatial locality, and has
a unique data set over 5.9 times the size of the SPEC integer
suite.

The LINPACK benchmark shows the highest spatial and
temporal locality of any benchmark, and by far the smallest
data intensiveness (the dot is hardly visible on the graph). It
is over 3,000 times smaller than any of the real world Sandia
applications. It exhibits 17% less temporal locality and roughly
the same spatial locality than the Sandia FP suite. The Sandia
Integer suite has half the temporal locality and less than one
third the spatial locality.

The STREAM benchmark showed over 100 times less tem-
poral locality than RandomAccess, and 2.4 times the spatial
locality. However, critically, the data intensiveness for streams
is 1/95th that of RandomAccess. The Sandia Integer Suite is
only 1% less spatially local than STREAM, indicating that

most of the bandwidth used to fetch a cache line is wasted.
While it is expected that RandomAccess exhibits very low

spatial and temporal locality, given its truly random memory
access pattern, its data set is 3.7� the size of the Sandia FP
suite, 4.5� the size of the Sandia Integer suite, and 9.7� and
26.5� the SPEC floating point and integer suites respectively.

Figure 4(a) shows each individual floating point application
in the Sandia and SPEC suites. On the basis of spatial and
temporal locality measurements alone, the the 177.mesa SPEC
FP benchmark would appear to dominate all others in the suite.
However, it has the second smallest unique data set size in the
entire SPEC suite. In fact, the Sandia FP applications average
over 9 times the data intensiveness of 177.mesa. There are
numerous very small data set applications in SPEC FP, in-
cluding 177.mesa, 178.galgel, 179.art, 187.facerec, 188.ammp,
and 200.sixtrack. In fact, virtually all of the applications from
SPEC FP that are “close” to a Sandia application in terms of
spatial and temporal locality exhibit a much smaller unique
data set. The mpsalsa application from the Sandia suite and
183.equake are good examples. While they are quite near on
the graph, mpsalsa has almost 17 times the unique data set
of equake. 183.equake is also very near the mean spatial
and temporal locality point for the entire Sandia FP suite,
except that the Sandia applications average more than 15 times
183.equake’s data set size.

Unfortunately, it would be extremely difficult to identify
a SPEC FP application that is “representative” of the Sandia
codes (either individually, or on average). Often papers choose
a subset of a given benchmark suite’s applications when pre-
senting the results. Choosing the five applications in SPEC FP
with the largest data intensiveness (168.wupwise, 171.swim,
173.applu, 189.lucas, 301.apsi), and 183.equake (because of
its closeness to the average and to mpsalsa) yields a suite that
averages 90% of the Sandia suite’s temporal locality, 86% of
its temporal locality, 75% of it’s data intensiveness. While
somewhat far from “representative”, particularly in terms of
data intensiveness, this subset is more representative of the
real applications than the whole.

Several interesting Sandia applications are shown on the
graph. The CTH application exhibits the most temporal lo-
cality, but relatively low spatial locality, and a relatively
small data set size. The LAMMPS (lmp) molecular dynamics
code is known to be compute intensive, but it exhibits a
relatively small memory footprint, and shows good memory
performance. The temporal and spatial locality measures are
quite low. SPPM exhibits very high spatial locality, very low
temporal locality, and a moderate data set size.

Figure 4(b) depicts the Sandia and SPEC Integer bench-
mark suites. These applications are strikingly more different
than the floating point suite. All of the applications exhibit
relatively low spatial locality, although the majority of Sandia
applications exhibit significantly less spatial locality than their
SPEC counterparts. The DFS code in the Sandia suite is the
most “RandomAccess-like”, with 255.vortex in the SPEC suite
being the closest counter part in terms of spatial and temporal
locality. 255.vortex’s temporal and spatial locality are within
25% and 15% of DFS’ respectively. However, once again,
DFS’s data set size is over 19 times that of 255.vortex’s.
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(a) (b)

Fig. 4. (a) Integer and (b) Floating Point Applications Temporal vs. Spatial Locality and Data Intensiveness.

300.twolf actually comes closest in terms of spatial and
temporal locality to representing the “average” Sandia Integer
application, however, the average Sandia code has nearly 140
times the data set size.

VII. CONCLUSIONS

This work has measured the temporal and spatial locality,
and the relative data intensiveness of a set of real world
Sandia applications, and compared them to the SPEC Integer
and Floating Point suites, as well as the RandomAccess
memory benchmark. While the SPEC floating point suite
exhibits greater temporal locality and less spatial locality
than the Sandia floating point suite, it averages significantly
less data intensiveness. This is crucial because the number
of unique items consumed by the application can affect the
performance of hierarchical memory systems more than the
average efficiency with which those items are stored in the
hierarchy.

The integer suites showed even greater divergence in all
three dimensions (temporal locality, spatial locality, and data
intensiveness). Many of the key integer benchmarks, which
represent applications of emerging importance, are close to
RandomAccess in their behavior.

This work has further quantitatively demonstrated the dif-
ference between a set of real applications (both current and
emerging) relevant to the high performance computing com-
munity, and the most studied set of benchmarks in computer
architecture. The real integer codes are uniformly harder on
the memory system than the SPEC integer suite. In the case
of floating point codes, the Sandia applications exhibit a
significantly larger data intensiveness, and lower temporal
locality. Because of the dominance of the memory system
in achieving performance, this indicates that architects should
focus on codes with significantly larger data set sizes.

The emerging applications characterized by the Sandia
Integer suite are the most challenging applications (next to

the RandomAccess benchmark). Because of their importance
and their demands on the memory system, they represent a
core group of applications that require significant attention.

Finally, beyond a specific study of one application domain,
this work presents an architecture-independent methodology
for quantifying the difference in memory properties between
any two applications (or suites of applications). This study can
be repeated for other problem domains of interest (the desktop,
multimedia, business, etc.).
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Abstract

Since the first vector supercomputers in the mid-1970’s,
the largest scale applications have traditionally been float-
ing point oriented numerical codes, which can be broadly
characterized as the simulation of physics on a computer.
Supercomputer architectures have evolved to meet the needs
of those applications. Specifically, the computational work
of the application tends to be floating point oriented, and the
decomposition of the problem two or three dimensional. To-
day, an emerging class of critical applications may change
those assumptions: they are combinatorial in nature, in-
teger oriented, and irregular. The performance of both
classes of applications is dominated by the performance of
the memory system. This paper compares the memory per-
formance sensitivity of both traditional and emerging HPC
applications, and shows that the new codes are significantly
more sensitive to memory latency and bandwidth than their
traditional counterparts. Additionally, these codes exhibit
lower base-line performance, which only exacerbates the
problem. As a result, the construction of future supercom-
puter architectures to support these applications will most
likely be different from those used to support traditional
codes. Quantitatively understanding the difference between
the two workloads will form the basis for future design
choices.

1. Introduction and Motivation

Supercomputing is in the midst of large technological,
architectural, and application changes that greatly impact
the way designers and programmers think about the system.
Technologically, the constraints of power and the speed of

�Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

light dictate that multicore architectures will form the basis
for the commodity processors that constitute the heart of
massively parallel processing (MPP) supercomputers. This
impacts the architecture in three ways:

1. Power constraints dictate that clock rates will not im-
prove appreciably as they have in the past.

2. The combination of power, the constraint of the speed
of light, and the architectural limits of instruction level
parallelism dictate that the trend in scalar processors
towards higher performing individual cores will not
hold.

3. Even though die area is increasing, cost is still dictated
by packaging, and the number of pins available for ex-
ternal communication will likely not grow as quickly
as the number of cores.

These technological and architectural trends are no less
significant than the those which dictated the transition from
vector-based supercomputers to commodity MPP architec-
tures in the early 1990’s. In fact, given the maturity of vector
architectures, such a change was likely inevitable. One criti-
cal architectural trend still holds across any implementation:
the challenge posed by the memory wall. In today’s super-
computers, the memory wall manifests itself as a dramatic
difference between the increase in processor clock rate and
the rate of a memory access. In multicore machines – even
with flat clock rates – the memory wall manifests itself due
to the increasing number of cores compared to available
channels (or independent access paths) to memory.

Unlike prior large-scale technological and architectural
changes, today’s architects must also contend with a shift
in the application base. Historically, supercomputing has
been dominated by the simulation of physics on a computer,
which itself can be thought of as fundamentally structured
in nature. In a three dimensional universe, problem decom-
position can be performed in three dimensions (by divid-
ing the simulated area into cubes). The types of supercom-



puter architectures that have been adopted often reflect this
structure. For example, 3d mesh topologies reflect the kind
of “nearest neighbors” communication pattern common in
physics codes. Furthermore, the “work” performed in these
applications is fundamentally floating point: the computa-
tion of temperature, pressure, volume, etc. Many emerging
applications, however, are different. They are combinatorial
in nature, fundamentally unstructured, and often consist of
integer computations.

This paper examines the memory performance of a suite
of real world applications from both the traditional and
emerging problem domains. It examines the impact of
memory latency and bandwidth on the applications. The
results demonstrate that both sets of applications are funda-
mentally dominated by memory latency, but that the emerg-
ing applications both begin with a lower baseline perfor-
mance, and are more sensitive to memory than their tra-
ditional counterparts. This represents a significant chal-
lenge to supercomputer architects, and quantitatively es-
tablishes how emerging applications differ from their tra-
ditional counterparts.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the related work. Section 3 examines the
applications under study. Section 4 specifies the methodol-
ogy and metrics used for evaluation. Section 5 presents the
results Conclusions are given in Section 6.

2. Related Work

Characterizing performance is a richly studied area of
computer architecture. The SPEC suite has been extensively
characterized[10, 8, 12, 14, 26], as have other workloads
such as OLTP[13, 4, 2]. These codes are generally chosen
to represent “typical” machine workloads for a class of ap-
plications.

In the area of supercomputing, specialized bench-
marks have been constructed to test specific areas of ma-
chine performance. The HPC Challenge RandomAccess
benchmark[6] and the STREAM benchmark[15] have been
specifically constructed to measure the performance of the
memory system. Although this information is useful to ar-
chitects, it is difficult to directly map back to application
performance.

The applications in this work have been studied
extensively[19, 18, 20]. The floating point suite is similar
in structure to other real world supercomputer applications
that have been previously examine[21, 28].

Numerous definitions of spatial and temporal local-
ity have been proffered to characterize the memory per-
formance of applications, both canonical [22, 9] and
experimental[19, 29, 5, 7, 27, 25]. This study examines the
performance impact of the memory system on applications.

The memory wall is also an extremely well studied

problem in computer architecture[30, 16]. It has been
argued that this is the dominant problem in computer
architecture[11]. Indeed, the results of this work further
support this conclusion by affirming that key supercomputer
applications are memory latency dominated in performance,
which is the classic definition of the memory wall.

3. Applications

This study examines two classes of important applica-
tions from Sandia National Laboratories: a traditional set
of primarily floating point codes, and an emerging class of
primarily integer codes. These codes have been discussed
extensively previously, and are significantly different from
traditional suites such as SPEC CPU[20, 19]. Their descrip-
tion and basic instruction mix follow.

3.1. Traditional Floating Point Codes

Each of the floating point applications are production
MPI codes designed to run at very large scale. Broadly
speaking they are scientific and engineering applications
which represent physical simulations. They are:

• ALEGRA is a finite element shock physics code capa-
ble of modeling near- and far-field responses to explo-
sions, impacts, and energy depositions.

• CTH is a multi-material, large deformation, strong
shock wave, solid mechanics code developed at San-
dia National Laboratories over the last 30 years. CTH
models multi-phase, elastic viscoplastic, porous and
explosive materials with multiple mesh refinement
methods.

• Cube3 Cube3 is a generic linear solver that drives the
Trilinos framework for parallel linear and eigensolvers.
It mimics a finite element analysis problem by creating
hexagonal elements, then assembling and solving a lin-
ear system. The width, depth, and degrees of freedom
(e.g., temperature, pressure, velocity, etc.) can be var-
ied.

• ITS performs Monte Carlo simulations of linear time-
independent coupled electron/photon radiation trans-
port.

• MPSalsa is a high resolution 3d simulation of react-
ing flow. The simulation requires both fluid flow and
chemical kinetics modeling.

• Xyce is a parallel circuit simulation system capable of
modeling very large circuits at multiple layers of ab-
straction (device, analog, digital, and mixed-signal). It
includes both SPICE-like models and radiation mod-
els.



3.2. Emerging Integer Applications

Unlike their traditional counterparts, the emerging appli-
cations studied in this work are integer-oriented, generally
problems from Discrete Math, typically unstructured, and
written for a variety of programming models. They are at
the core of important problems in proteomics, genomics,
data mining, pattern matching, and computational geome-
try. Although many are classic algorithms problems (DFS,
for example), the implementations are typically “newer”
than their traditional counterparts (that is, there are no three
decade old codes among these applications).

• DFS implements a depth-first search on a large graph
and forms the basis for several high-level algorithms
including connected components, tree and cycle detec-
tion, solving the two-coloring problem, finding Artic-
ulation Vertices, and topological sorting.

• Connected Components breaks a graph into compo-
nents. Two vertices are in a connected component if
and only if there is a path between them.

• Subgraph Isomorphism determines whether or not a
subgraph exists within a larger graph.

• Full Graph Isomorphism determines whether or not
two graphs have the same shape or structure.

• Shortest Path computes the shortest path between two
vertices using a breadth first search. Real world ap-
plications include path planning and networking and
communication.

• Graph Partitioning is used extensively in VLSI cir-
cuit design and adaptive mesh refinement. The prob-
lem divides a graph in to k partitions while minimiz-
ing the cut between the partitions (or the total weight
of the edges that cross from one partition to another).

• BLAST is the Basic Local Alignment Search Tool and
is the most heavily used method for quickly search nu-
cleotide and protein databases in biology.

• zChaff is a heuristic for solving the Boolean Satisfi-
ability Problem. In propositional logic, a formula is
satisfiable if there exists an assignment of truth values
to each of its variables that make the formula true.

3.3. Instruction Mix for Each Suite

Figure 1 shows the instruction mix for the integer and
floating point suites. Although the “work” for the floating
point suite is primarily floating point, real applications per-
form significantly less floating point than do typical bench-
mark suites. For example, the SPEC CPU 2000 suite av-
erages 32% floating point, while real Sandia codes average

Figure 1. Sandia Integer and Floating Point Suite
Instruction Mix

only about 12% floating point[19]. Other key differences
between the integer and floating point codes are apparent.
The integer codes perform 15% fewer memory references
(although those references are much more likely to miss the
cache, as Section 5 will demonstrate). Furthermore, the in-
teger codes perform twice as many branches as their float-
ing point counterparts. This is unsurprising since scientific
codes tend to have larger basic blocks due to complex for-
mula calculations[23].

The combination of an increased cache miss rate and an
increased number of branches makes the integer codes chal-
lenging for modern superscalar processors.

4. Methodology and Metrics

This section discusses the application traces used in this
work, the metrics used for evaluation, and the simulation
environment. The simulation methodology is similar to that
employed in prior studies of this application base, although
the metrics are entirely new.

4.1. Application Traces

Each of the applications used in this work was ana-
lyzed using traces of 4 billion sequential instructions pro-
duced by the Amber[1] instruction trace generator for the
PowerPC. These traces have been used in several prior
studies[19, 18, 20, 23, 17, 24] and are well understood. The
traces typically represent multiple executions of the main
loop of the program and were originally generated with the
input from applications experts and platform profiling tools.
In the case of the MPI programs, traces were of single node
execution.



Table 1. Processor Configuration
Parameter Val
Issue Width 8
Commit Width 4
RUU Size 64
L1 Instruction/Data Cache 64k

2-way Set Associative
64-byte block
Least Recently Used

L1 Cache Latency 3 cycles
L2 Unified Cache 1 MB

16-way Set Associative
64-byte block
Least Recently Used

L2 Cache Latency 20 cycles
Integer ALUs 3
Integer Multiplier/Dividers 1
FP ALUs 2
FP Multiplier/Divider 1
Clock Rate 2.5 GHz

4.2. Metrics

This work defines bandwidth and latency as follows:

• Latency: the time between when the processor re-
quests a memory value and when the first byte of that
request arrives.

• Bandwidth: the transfer speed of the second and all
subsequent bytes of a memory request.

The simulations in this work vary the memory bandwidth
and latency according to this definition for each run.

4.3. Simulation Environment

The traces were used as inputs to Sandia’s Structural
Simulation Toolkit (SST). The SST is a parallel machine
simulator (for both shared and distributed memory archi-
tectures) that uses an enhanced version of SimpleScalar’s
sim-outorder processor simulator[3] as the baseline
processor. SST has significantly enhanced cache and mem-
ory models, and has been used to simulate several super-
computer architectures.

The memory simulated in this work is a DDR-like inter-
face which performs transfers in 16-byte blocks.

Table 1 summarizes the conventional superscalar proces-
sor configuration used in this study. The memory latency
and bandwidth were varied and the committed Instructions
Per Cycle (IPC) measured.

The memory latencies examined were: 15ns, 30ns, 60ns,
120ns, and 240ns.

Figure 2. Average Latency and Bandwidth Ef-
fects for the Sandia Floating Point and Integer
Suites

The bandwidths in this experiment were: 2.5 GB/sec, 5
GB/sec, 10 GB/sec, 20 GB/sec, and 40 GB/sec.

The baseline memory latency and bandwidth numbers in
this study look somewhat more aggressive than a modern
Opteron (60ns latency and 10 GB/sec of bandwidth). How-
ever, several points around that baseline were examined, and
can be used for comparison given the reader’s assumptions
about what is appropriate. Those points were generated by
halving and doubling each configuration parameter (latency
and bandwidth) twice.

5. Results

Figure 2 shows the average effect of varying latency and
bandwidth (60ns of memory latency and 10 GB/sec of mem-
ory bandwidth). The center point for each graph (relative
latency and bandwidth of 1.0) is this baseline, and each bar
represents the IPC achieved at that latency/bandwidth point.



Floating Point Applications

Integer Applications

Figure 3. Complete Results for the Integer and Floating Point Suites



Figure 3 depicts the latency/bandwidth results for each
application in both the integer and floating point suites.

On average, in the floating point case, halving the avail-
able bandwidth results in an average drop in performance of
1.24%. In the case of the integer suite, the average drop in
performance is 3.59%. By contrast, doubling the memory
latency leads to a respective drop in performance of 11%
and 32% respectively. Thus, all of the codes are more la-
tency than bandwidth dominated. This is a critical point for
two reasons:

1. Memory bandwidth is the typical unit of memory per-
formance measure discussed by supercomputer archi-
tects. This may be because the construction of MPP-
based supercomputers is dominated by the construc-
tion of a high performance network interface, and MPP
system architects therefore tend to think in more net-
working oriented terms. It may also be because band-
width is an easier system characteristic to affect than
latency. Regardless, the more critical unit of measure-
ment is quite conclusively latency.

2. As discussed in Section 1, one of the key concerns for
supercomputer architects is the transition to multicore
machines. If today’s instruction streams in a unicore
processor were memory bandwidth bound, and avail-
able bandwidth did not grow with the number of cores,
performance would suffer. However, these results in-
dicate that there is potentially headroom in bandwidth.

Additionally, the structure of these applications generally
makes it very difficult for the processor to compute mem-
ory addresses quickly enough to keep the memory bus busy.
This tends to make bandwidth less important than latency.

The integer codes are clearly more sensitive to mem-
ory performance than their traditional floating point coun-
terparts (doubling the latency or halving the bandwidth has
2.9� the impact on the integer suite as compared to the
floating point suite).

It is also critical to note that the baseline performance of
each suite is significantly different. The floating point suite
has a baseline IPC of 1.22, while the integer suite has a base-
line performance of 0.70. Thus, the integer suite baselines
with 43% less performance than the floating point suite,
and is significantly more sensitive to latency and bandwidth
variations after that.

Figure 4 shows the most affected applications for the
floating point and integer suites. Cube3 from the floating
point suite and Shortest Path from the integer suite look re-
markably similar. Cube3 has a baseline performance only
10% lower than Shortest Path, and both applications expe-
rience a 55% drop in performance if the memory latency
is doubled. Cube3 experiences a 6% drop in performance
if the bandwidth is halved while Shortest Path experiences
a 7% drop in performance. This is not surprising since

Figure 4. The Most Sensitive Applications From
Each Suite

sparse graphs can be represented as sparse matrices, simi-
lar to those that are fundamental to linear algebra problems.
The sparse matrix representation is not used in this particu-
lar instance of the graph problem, however the fundamental
nature of the data structures used are similarly sparse.

The least affected applications from each suite (Xyce
from the floating point suite and BLAST from the integer
suite) show nearly flat latency/bandwidth curves. Doubling
the memory latency shows less than a 1.25% performance
degradation for Xyce and less than a 5% performance degra-
dation for BLAST. Similarly, halving the bandwidth yields
less than half a percent performance degradation. These ap-
plications are known to generally be more compute inten-
sive, and this result confirms that prior knowledge. These
are the only applications with relatively flat curves.

Cube3 and Alegra are the most sensitive to latency or
bandwidth changes of the floating point suite, while con-
nected components and shortest path dominate the integer
suite.



To better quantify each suite’s sensitivity to bandwidth
and latency effects, the sensitivity must be defined. Intu-
itively, the sensitivity can be thought of as the slope of ei-
ther the latency or bandwidth lines. As a first-order approx-
imation, these curves can be thought of as linear (they are
very nearly so). For a given latency or bandwidth, the slope
of the resulting 2-dimensional slice of Figure 2 (either la-
tency vs. IPC or bandwidth vs. IPC) can be calculated. For
example, given the baseline latency of 60ns, the bandwidth
sensitivity (or slope of the bandwidth line) can be calculated
as follows:

P60ns,2.5GB/sec � P60ns,40GB/sec

15ns� 240ns
(1)

Where Platency,bandwidth represents the performance at
a given latency and bandwidth. Similarly, given the base-
line bandwidth of 10GB/sec, the latency sensitivity can be
computed by:

P15ns,10GB/sec � P240ns,10GB/sec

2.5GB/sec� 40GB/sec
(2)

The sensitivity to bandwidth is a positive number be-
cause an increase in bandwidth leads to an increase in per-
formance, while the sensitivity to latency is a negative num-
ber because an increase in latency leads to a decrease in
performance.

Figure 5(a) shows the average sensitivity to latency and
bandwidth for both suites, while (b) includes each individ-
ual application for the floating point suite, and (c) includes
the same information for the integer suite. As discussed
earlier, the integer suite is clearly more sensitive to both
bandwidth and latency than the floating point suite. The
integer suite is 42� 60% more sensitive to latency than the
floating point suite. While it begins 66% more sensitive to
bandwidth than the floating point suite, at very high mem-
ory latencies the integer suite is nearly 30% less sensitive to
bandwidth than the floating point suite.

6. Conclusions and Future Work

This paper has examined the impact of memory latency
and bandwidth on a set of traditional floating-point ori-
ented and emerging integer oriented supercomputer appli-
cations. The results demonstrate that both application suites
are more dominated by latency than bandwidth. It has fur-
ther shown that the emerging integer applications are 2.9�
more sensitive to a halving of the memory bandwidth or
doubling of the memory latency than their traditional coun-
terparts, which is critical to understanding the nature of
these emerging codes.

This result has two critical impacts to the field of su-
percomputer architecture: first, it demonstrates that there is
some degree of “bandwidth headroom” in the construction

of multicore supercomputers; and second, it quantitatively
shows that emerging applications are much more memory
sensitive than traditional scientific computing codes. This
provides further evidence in support of the long-held belief
that the lessons of scientific computing have little applica-
bility to these applications, particularly as they relate to data
decomposition.

Because the transition to multicore MPPs will impact the
memory system in future machines, understanding the on-
node memory performance of real applications is critical.
The technology determines the number of available inde-
pendent channels into memory (which affects aggregate la-
tency by constraining the number of simultaneous memory
accesses the memory system can sustain), and the speed and
width of those channels (which affects bandwidth). Both
are likely to be more constrained than the number of cores
that can placed on a die. Choosing the right balance for
supercomputer applications will depend on characterizing
the requirements of the workloads of those machines. This
study does so, and shows that this is an even more signif-
icant problem for emerging codes than for classical super-
computing applications.

Finally, this study identifies four critical applications
(two from each suite) that demonstrate the most sensitiv-
ity to latency and bandwidth. Cube3 and Alegra from the
floating point suite and Connected Components and Short-
est Path from the integer suite. As a whole, problems in
graph theory are shown to be particularly challenging to the
memory system.

Future work will extend this study to examine the impact
of moving to multicore architectures with simpler cores.
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Abstract

Large scale hardware-supported multithreading, an at-
tractive means of increasing computational power, benefits
significantly from low per-thread costs. Hardware support
for lightweight threads is a developing area of research.
Each architecture with such support provides a unique in-
terface, hindering development for them and comparisons
between them. A portable abstraction that provides basic
lightweight thread control and synchronization primitives
is needed. Such an abstraction would assist in exploring
both the architectural needs of large scale threading and
the semantic power of existing languages. Managing thread
resources is a problem that must be addressed if massive
parallelism is to be popularized. The qthread abstraction
enables development of large-scale multithreading applica-
tions on commodity architectures. This paper introduces
the qthread API and its Unix implementation, discusses re-
source management, and presents performance results from
the HPCCG benchmark.

1. Introduction

Lightweight threading primitives, crucial to large scale
multithreading, are typically either platform dependent or
compiler-dependent. Generic programmer-visible multi-
threading interfaces, such as pthreads, were designed for
“reasonable” numbers of threads—less than one hundred or
so. In large-scale multithreading situations, the features and
guarantees provided by these interfaces prevent them from
scaling to “unreasonable” numbers of threads (a million or
more), necessary for multithreaded teraflop-scale problems.

Parallel execution has largely existed two different
worlds: the world of the very large, where program-
mers explicitly create parallel threads of execution, and the

�Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

world of the very small, where processors extract paral-
lelism from serial instruction streams. Recent hardware ar-
chitectural research has investigated lightweight threading
and programmer-defined large scale shared-memory paral-
lelism. The lightweight threading concept allows exposure
of greater potential parallelism, increasing performance via
greater hardware parallelism. The Cray XMT [7], with the
Threadstorm CPU architecture, avoids memory dependency
stalls by switching among 128 concurrent threads. XMT
systems support between over 8000 processors. To maxi-
mize throughput, the programmer must provide at least 128
threads per processor, or over 1,024,000 threads.

Taking advantage of large-scale parallel systems with
current parallel programming APIs requires significant
computational and memory overhead. For example, stan-
dard POSIX threads must be able to receive signals, which
either requires an OS representation of every thread or re-
quires user-level signal multiplexering [14]. Threads in a
large-scale multithreading context often need only a few
bytes of stack (if any) and do not require the ability to re-
ceive signals. Some architectures, such as the Processor-in-
Memory (PIM) designs [5, 18, 23], suggest threads that are
merely a few instructions included in the thread’s context.

While hardware-based lightweight threading constructs
are important developments, the methods for exposing such
parallelism to the programmer are platform-specific and
typically rely either on custom compilers [3, 4, 7, 10, 11,
26], entirely new languages [1, 6, 8, 13], or have archi-
tectural limitations that cannot scale to millions of threads
[14, 22]. This makes useful comparisons between archi-
tectures difficult. With a standard way of expressing par-
allelism that can be used with existing compilers, compar-
ing cross-platform algorithms becomes convenient. For ex-
ample, the MPI standard allows a programmer to create a
parallel application that is portable to any system provid-
ing an MPI library, and different systems can be compared
with the same code on each system. Development and study
of large-scale multithreaded applications is limited because
of the platform-specific nature of the available interfaces.
Having a portable large-scale multithreading interface al-



lows application development on commodity hardware that
can exploit the resources available on large-scale systems.

Lightweight threading requires a lightweight synchro-
nization model [9]. The model used by the Cray XMT and
PIM designs, pioneered by the Denelcor HEP [15], uses ful-
l/empty bits (FEBs). This technique marks each word in
memory with a “full” or “empty” state, allows programs
to wait for either state, and makes the state change atomi-
cally with the word’s contents. This technique can be imple-
mented directly in hardware, as it is in the XMT. Alterna-
tives include ADA-like protected records [24] and fork-sync
[4], which lack a clear hardware analog.

This paper discusses programming models’ impact
on efficient multithreading and the resource management
necessary for those models. It introduces the qthread
lightweight threading API and its Unix implementation.
The API is designed to be a lightweight threading standard
for current and future architectures. The Unix implementa-
tion is a proof of concept that provides a basis for develop-
ing applications for large scale multithreaded architectures.

2. Recursive threaded programming models
and resource management

Managing large numbers of threads requires managing
per-thread resources, even if those requirements are low.
This management can affect whether multithreaded appli-
cations run to completion and whether they execute faster
than an equivalent serial implementation. The worst conse-
quence of poor management is deadlock: if more threads
are needed than resources are available, and reclaiming
thread resources depends on spawning more threads, the
system cannot make forward progress.

2.1. Parallel programming models

An illustrative example of the effect the programming
model on resource management is the trivial problem of
summing integers in an array. A serial solution is trivial:
start at the beginning, and tally each sequential number un-
til the end of the array. There are at least three parallel ex-
ecution models that could compute the sum. They can be
referred to as the recursive tree model, the equal distribu-
tion model, and the lagging-loop model.

A recursive tree solution to summing the numbers in an
array is simple to program: divide the array in half, and
spawn two threads to sum up both halves. Each thread does
the same until its array has only one value, whereupon the
thread returns that value. Thread that spawned threads wait
for their children to return and return the sum of their values.
This technique is parallel, but uses a large amount of state.
At any point, most of the threads are not doing useful work.
While convenient, this is a wasteful technique.

The equal distribution solution is also simple: divide
the array equally among all of the available processors and
spawn a thread for each. Each thread must sum its segment
serially and return the result. The parent thread sums the
return values. This technique is efficient because it matches
the needed parallelism to the available parallelism, and the
processors do minimal communication. However, equal
distribution is not particularly tolerant of other load imbal-
ances: execution is as slow as the slowest thread.

The lagging-loop model relies upon arbitrary workload
divisions. It breaks the array into small chunks and spawns
a thread for each chunk. Each thread sums its chunk and
then waits for the preceding thread (if any) to return an an-
swer before combining the sum and returning its own total.
Eventually the parent thread will do the same with the last
chunk. This model is more efficient than the tree model,
and the number of threads depends on the chunk size. The
increased number of threads makes it more tolerant of load
imbalances, but has more overhead.

2.2. Handling resource exhaustion

These methods differ in the way resources must be man-
aged to guarantee forward progress. Whenever new thread
is requested, one of four things can be done:

1. Execute the function inline.
2. Create a new thread.
3. Create an record that will become a thread later.
4. Block until sufficient resources are available.

In a large enough parallel program, eventually the resources
will run out. Requests for new threads must either block un-
til resources become available or must fail and let the pro-
gram handle the problem.

Blocking to wait for resources to become available af-
fects each parallel model differently. The lagging loop
method works well with blocking requests, because the
spawned threads don’t rely on spawning more threads.
When these threads complete, their resources may be
reused, and deadlock is easily avoided. The equal distri-
bution method has a similar advantage. However, because
it avoids using more than the minimum number of threads,
it does not cope as well with load imbalances.

The recursive tree method gathers a lot of state quickly
and slowly releases it, making the method particularly sus-
ceptible to resource exhaustion deadlock, where all run-
ning threads are blocked spawning more threads. In order
to guarantee forward progress, resources must be reserved
when threads spawn and threads must execute serially when
reservation fails. The minimum state that must be reserved
is the amount necessary get to the bottom of the recursive
tree serially. Thus, if there are only enough resources for a
single depth-first exploration of the tree, recursion may only



occur serially. If there are enough resources for two serial
explorations of the tree, the tree may be divided into two
segments to be explored in parallel, and so forth. Once re-
source reservation fails, only a serial traversal of the recur-
sive tree may be performed. Thus, blocking for resources
is a poor behavior for a recursive tree as forward progress
cannot be assured.

Such an algorithm is only possible when the maximum
depth of the recursive tree is known. If the depth is un-
known, then sufficient resources for a serial execution can-
not be reserved. Any resources reserved for a parallel execu-
tion could prevent the serial recursive tree from completing.

It is worth noting that a threading library can only be re-
sponsible for the resources necessary for basic thread state.
Additional state required during recursion has the potential
to cause deadlock and must be managed similarly.

3. Application programming interface

The qthread API provides several key features:

• Large scale lightweight multithreading support
• Access to or emulation of lightweight synchronization
• Basic thread-resource management
• Source-level compatibility between platforms
• A library-based API, forgoing custom compilers

The qthread API maximizes portability to architectures
supporting lightweight threads and synchronization prim-
itives by providing a stable interface to the programmer.
Because architectures and operating systems supporting
lightweight threading are difficult to obtain, initial analysis
of the API’s performance and usability studies commodity
architectures such as Itanium and PowerPC processors.

The qthread API consists of three components: the core
lightweight thread command set, a set of commands for
resource-limit-aware threads (“futures”), and an interface
for basic threaded loops. Qthreads have a restricted stack
size, and provide a locking scheme based on the full/empty
bit concept. The API provides alternate threads, called “fu-
tures”, which are created as resources are available.

One of the likely features of machines supporting
large scale multithreading is non-uniform memory access
(NUMA). To take advantage of NUMA systems, they must
be described to the library, in the form of “shepherds,”
which define memory locality.

3.1. Basic thread control

The API is an anonymous threading interface. Threads,
once created, cannot be controlled by other threads. How-
ever, they can provide FEB-protected return values so that
a thread can easily wait for another. FEBs do not require

polling, which is discouraged as the library does not guar-
antee preemptive scheduling.

Threads are assigned to one of several “shepherds” at
creation. A shepherd is a grouping construct. The number
of shepherds is defined when the library is initialized. In
an environment supporting traveling threads, shepherds al-
low threads to identify their location. Shepherds may corre-
spond to nodes in the system, memory regions, or protection
domains. In the Unix implementation, a shepherd is man-
aged by at least one pthread which executes qthreads. It is
worth noting that this hierarchical thread structure, partic-
ular to the Unix implementation (not inherent to the API),
is not new but rather useful for mapping threads to mobility
domains. A similar strategy was used by the Cray X-MP
[30], as well as Cilk [4] and other threading models.

Only two functions are required for creating threads:
qthread init (shep), which initializes the library with shep
shepherds; and qthread fork(func,arg, ret ), which creates a
thread to perform the equivalent of �ret = func(arg). The
API also provides mutex-style and FEB-style locking func-
tions. Using synchronization external to the qthread library
is not encouraged, as that prevents the library from making
scheduling decisions.

The mutex operations are qthread lock(addr) and
qthread unlock(addr). The FEB semantics are more
complex, with functions to manipulate the FEB state
in a non-blocking way (qthread empty(addr) and
qthread fill (addr)), as well as blocking reads and

blocking writes. The blocking read functions wait for
a given address to be full and then copy the contents of
that address elsewhere. One (qthread readFF()) will leave
the address marked full, the other (qthread readFE()) will
then mark the address empty. There are also two write
actions. Both will fill the address being written, but one
(qthread writeEF()) will wait for the address to be empty
first, while the other (qthread writeF()) won’t. Using the
two synchronization techniques on the same addresses at
the same time produces undefined behavior, as they may be
implemented using the same underlying mechanism.

3.2. Futures

Though the API has no built-in limits on the number of
threads, thread creation may fail due to memory limits or
other system-specific limits. “Futures” are threads that al-
low the programmer to set limits on the number of futures
that may exist. The library tracks the futures that exist,
and stalls attempts to create too many. Once a future ex-
its, a future waiting to be created is spawned and its parent
thread is unblocked. The futures API has its own initializa-
tion function ( future init ( limit )) to specify the maximum
number of futures per shepherd, and a way to create a future
( future fork (func,arg, ret )) that behaves like qthread fork() .



3.3. Threaded loops and utility functions

The qthread API includes several threaded loop inter-
faces, built on the core threading components. Both C++-
based templated loops and C-based loops are provided.
Several utility functions are also included as examples.
These utility functions are relatively simple, such as sum-
ming all numbers in an array, finding the maximum value,
or sorting an array.

There are two parallel loop behaviors: one spawns a
separate thread for each iteration of the loop, and the
other uses an equal distribution technique. The func-
tions that provide one thread per iteration are qt loop ()
and qt loop future () , using either qthreads or futures, re-
spectively. The functions that use equal distribution are
qt loop balance() and qt loop balance future () . A variant
of these, qt loopaccum balance(), allows iterations to return
a value that is collected (“accumulated”).

The qt loop () functions take arguments start , stop,
stride , func, and argptr. They behave like this loop:

unsigned i n t i ;
for ( i = s t a r t ; i < stop ; i += s t r i d e ) {

func (NULL, a r g p t r ) ;
}

The qt loop balance() functions, since they distribute the
iteration space, require a function that takes its iteration
space as an argument. Thus, while it behaves similar to
qt loop () , it requires that its func argument point to a func-
tion structured like this:

void func ( q th read t �me, const s i z e t s t a r t a t ,
const s i z e t s topat , void �arg ) {

for ( s i z e t i = s t a r t a t ; i < s topa t ; i ++)
/� do work � /

}

The qt loopaccum balance() functions require an accu-
mulation function so that return values can be gathered. The
function behaves similar to the following loop:

unsigned i n t i ;
for ( i = s t a r t ; i < stop ; i ++) {

func (NULL, argp t r , tmp ) ;
accumulate ( r e t v a l , tmp ) ;

}

Similar to the qt loop balance() function, it uses the
equal distribution technique. The func function must store
its return value in tmp, which is then given to the accumulate
function to gather and store in retval .

4. Performance

The design of the qthread API is based around two
primary goals: efficiency in handling large numbers of
threads and portability to large-scale multithreaded archi-
tectures. The implementation of the API discussed in this
section is the Unix implementation, which is for POSIX-
compatible Unix-like systems running on traditional CPUs,

such as PowerPC, x86, and IA-64 architectures. In this
environment, the qthread library relies on pthreads to al-
low multiple threads to run in parallel. Lightweight threads
are created as a processor context and a small (4k) stack.
These lightweight threads are executed by the pthreads.
Context-switching between qthreads is performed as nec-
essary rather than on an interrupt basis. For performance,
memory is pooled in shepherd-specific structures, allowing
shepherds to operate independently.

Without hardware support, FEB locks are emulated via
a central hash table. This table is a bottleneck that would
not exist on a system with hardware lightweight synchro-
nization support. However, the FEB semantics still allow
applications to exploit asynchrony even when using a cen-
tralized implementation of those semantics.

4.1. Benchmarks

To demonstrate qthread’s advantages, six micro-
benchmarks were designed and tested using both pthreads
and qthreads. The algorithms of both implementations are
identical, with the exception that one uses qthreads as the
basic unit of threading and the other uses pthreads. The
benchmarks are as follows:

1. Ten threads atomically increment a shared counter one
million times each

2. 1,000 threads lock and unlock a shared mutex ten thou-
sand times each

3. Ten threads lock and unlock 1 million mutexes
4. Ten threads spinlock and unlock ten mutexes 100 times
5. Create and execute 1 million threads in blocks of 200

with at most 400 concurrently executing threads
6. Create and execute 1 million concurrent threads

Figure 1 illustrates the difference between using qthreads
and pthreads on a 1.3Ghz dual-processor PowerPC G5 with
2GB of RAM. Figure 2 illustrates the same on a 48-node
1.5Ghz Itanium Altix with 64GB of RAM. Both systems
used the Native Posix Thread Library Linux Pthread imple-
mentation. The bars in each chart in Figure 1 are, from left
to right, the pthread implementation, the qthread implemen-
tation with a single shepherd, with two shepherds, and with
four shepherds. The bars in each chart in Figure 2 are, from
left to right, the pthread implementation, the qthread imple-
mentation with a single shepherd, with 16 shepherds, with
48 shepherds, and with 128 shepherds.

In Figures 1(a) and 2(a), using pthreads is outperformed
by qthreads because qthreads uses a hardware-based atomic
increment while pthreads is forced to rely on a mutex. Be-
cause of contention, additional shepherds do not improve
the qthread performance but rather decrease it slightly.
Since the qthread locking implementation is built with
pthread mutexes, it cannot compete with raw pthread mu-
texes for speed, as illustrated in Figures 1(b), 2(b), 1(c),
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Figure 1: Microbenchmarks on a dual PPC
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Figure 2: Microbenchmarks on a 48-node Altix

and 2(c). This is a detail that would likely not be true on a
system that had hardware support for FEBs, and would be
significantly improved with a better centralized data struc-
ture, such as a lock-free hash table. Because of the qthread
library’s simple scheduler, it outperforms pthreads when us-
ing spinlocks and a low number of shepherds, as illustrated
in Figure 1(d). The impact of the scheduler is demonstrated
by larger numbers of shepherds (Figure 2(d)).

The pthread library was incapable of more than several
hundred concurrent threads—requesting too many threads
deadlocked the kernel (Figures 1(f) and 2(f)). A benchmark
was designed that worked within pthreads’ limitations by al-
lowing a maximum of 400 concurrent threads. Threads are
spawned in blocks of 200, and after each block, threads are
joined until there are only 200 outstanding before spawning
a new block of 200 threads. In this benchmark, Figures 1(e)
and 2(e), pthreads performs more closely qthreads—on the
PowerPC system, it is only a factor of two more expensive.

5. Application development

Development of software that realistically takes advan-
tage of lightweight threading is important to research, but
difficult to achieve due to the lack of lightweight threading
interfaces. To evaluate the performance potential of the API
and how difficult it is to integrate into existing code, two

representative applications were considered. First, a paral-
lel quicksort algorithm was analyzed and modified to fit the
qthread model. Secondly, a small parallel benchmark was
modified to use qthreads.

5.1. Quicksort

Portability of an API does not free the programmer com-
pletely from taking the hardware into consideration when
designing an algorithm. There are features of alternative
threading environments that the qthread API does not emu-
late, such as the hashed memory design found in the Cray
MTA-2. Memory addresses in the MTA-2 are distributed
throughout the machine at word boundaries. When dividing
work amongst several threads on the MTA-2, the boundaries
of the work regions can be fine-grained without significant
loss of performance. Conventional processors, on the other
hand, assume that memory within page boundaries are all
contiguous. Thus, conventional cache designs reward pro-
grams that allow an entire page to reside in a single pro-
cessor’s cache, and limit the degree to which tasks can be
divided among multiple processors without paying a heavy
cache coherency penalty.

An example wherein the granularity of data distribution
can be crucial to performance is a parallel quicksort algo-
rithm. In any quicksort algorithm, there are two phases:
first the array is partitioned into two segments around a
“pivot” point, and then both segments are sorted indepen-
dently. Sorting the segments independently is relatively
easy, but partitioning the array in parallel is more complex.
On the MTA-2, elements of the array to be partitioned can
be divided up among each thread without regard to the lo-
cation of the elements. On conventional processors, how-
ever, that behavior is very likely to result in multiple pro-
cessors transferring the same cache-line or memory page
between processors. Constantly sending the same memory
back and forth between processors prevents the parallel al-
gorithm from exploiting the capabilities of multiple proces-
sors.

The qthread library includes an implementation of the
quicksort algorithm that avoids contention problems by en-
suring that work chunks are always at least the size of a
page. This avoids cache-line competition between proces-
sors while still exploiting the parallel computational power
of all available processors on sufficiently large arrays. Fig-
ure 3 illustrates the scalability of the qthread-based quick-
sort implementation, and compares its performance to the
libc qsort () function. This benchmark sorts an array of
one billion double-precision floating point numbers on a 48-
node SGI Altix SMP with 1.5Ghz Itanium processors.
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Figure 3: qutil qsort() and libc’s qsort()

5.2. High performance computing conjugate
gradient benchmark

The qthread API makes parallelizing ordinary serial
code simple. As a demonstration of its capabilities, the
HPCCG benchmark from the Mantevo project [20] was par-
allelized with the Qloop interface of the qthread library.
The HPCCG program is a conjugate gradient benchmark-
ing code for a 3-D chimney domain, largely based on code
in the Trilinos[21] solver package. The code relies largely
upon tight loops where every iteration of the loop is es-
sentially independent of every other iteration. With simple
modifications to the code structure, the serial implementa-
tion of HPCCG was transformed into multithreaded code.
As illustrated in Figure 4, the parallelization is able to scale
well. Results are presented using strong scaling with a uni-
form 75x75x1024 domain on a 48-node SGI Altix SMP.
The SGI MPI results are presented to 48 processes, or one
process per CPU, as further results would over-subscribe the
processors, which generally underperforms with SGI MPI.
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Figure 4: HPCCG on a 48-Node SGI Altix SMP

One of the features of the HPCCG benchmark is that it
comes with an optimized MPI implementation. The MPI
implementation, using SGI’s MPI library, is entirely dif-

ferent from the qthread implementation and does not use
shepherds. The qthread and MPI implementations scale ap-
proximately equally well up to about sixteen nodes. Beyond
sixteen nodes however, MPI begins to behave very badly. At
the same time, the qthread implementation’s execution time
does not change significantly.

Upon analysis of the MPI code, the poor performance of
the MPI implementation is caused by MPI Allreduce() in one
of the main functions of the code. While this takes almost
18.9% of execution time with eight MPI processes, it takes
84.1% of the execution time with 48 MPI processes. While
it is tempting to simply blame the problem on a bad imple-
mentation of MPI Allreduce(), it is probably more valid to
examine the difference between the qthread and MPI imple-
mentations. The qthread implementation performs the same
computation as the MPI Allreduce(), but rather than require
all nodes to come to the same point before the reduction
can be computed and distributed, the computation is per-
formed as the component data becomes available from the
threads returning, the computational threads can exit, and
other threads scheduled on the shepherds can proceed. The
qthread implementation exposes the asynchronous nature of
the whole benchmark, while the MPI implementation does
not. This asynchrony is revealed even though the Unix im-
plementation of the qthread library relies upon centralized
synchronization, and would likely provide further improve-
ment on a real massively parallel architecture.

6. Related work

Lightweight threading models generally fit one of two
descriptions: they either require a special compiler or they
aren’t sufficiently designed for large-scale threading (or
both). For example, Python stackless threads [28] provide
extremely lightweight threads. Putting aside issues of us-
ability, which is a significant issue with stackless threads,
the interface allows for no method of applying data paral-
lelism to the stackless threads: a thread may be scheduled
on any processor. Many other threading models, from nano-
threads [26] to OpenMP [11], lack a sufficient means of al-
lowing the programmer to specify locality. This becomes
a significant issue as machines get larger and memory ac-
cess becomes non-uniform [31]. Languages such as Chapel
[8] and X10 [6], or modifications to existing languages such
as UPC [13] and Cilk [4], that require special compilers are
interesting and allow for better parallel semantic expressive-
ness than approaches based in adding library calls to exist-
ing languages. However, such models not only break com-
patibility with existing large codebases but also do not pro-
vide for strong comparisons between architectures. Some
threading models, such as Cilk, use a fork-and-join style of
synchronization that, while semantically convenient, does
not allow for as fine-grained control over communication



between threads as the FEB-based model, which allows in-
dividual load and store instructions to be synchronized.

The drawbacks of heavyweight, kernel-supported
threading such as pthreads are well-known [2], leading to
the development of a plethora of user-level threading mod-
els. The GNU Portable Threads [14], for example, allow a
programmer to use user-level threading on any system that
supports the full C standard library. It uses a signal stack
to allow the subthreads to receive signals, which limits its
ability to scale. Coroutines [29] are another model that al-
low for virtual threading even in a serial-execution-only en-
vironment, by specifying alternative contexts that get used
at specific times. Coroutines can be viewed as the most ba-
sic form of cooperative multitasking, though they can use
more synchronization points than just context-switch barri-
ers when run in an actual parallel context. One of the more
powerful details of coroutines is that generally one routine
specifies which routine gets processing time next, which
is behavior that can also be obtained when using continu-
ations [19, 27]. Continuations, in the most broad sense, are
primarily a way of minimizing state during blocking oper-
ations. When using heavyweight threads, whenever are a
thread does something that causes it to stop executing, its
full context—local variables, a full set of processor regis-
ters, and the program counter—are saved so that when the
thread becomes unblocked it may continue as if it had not
blocked. A continuation allows the programmer to spec-
ify that when a thread blocks it exits, and that unblock-
ing causes a new thread to be created with specific argu-
ments, thus requiring the programmer to save any neces-
sary state to memory while any unnecessary state can be
disposed of. Protothreads [12, 17] and Python stackless
threads [28], by contrast, assert that outside of CPU context
there is no thread-specific state (i.e. “stack”) at all. This
makes them extremely lightweight but limits the flexibility
(at most, only one of them can call a function), which has
repercussions for ease-of-use. User-level threading models
can be further enhanced with careful kernel modification
[25] to enable convenient support of many of the features
of heavyweight kernel threads, such as signals, advanced
scheduling conventions, and even limited software interrupt
handling.

The problem of resource exhaustion due to excessive
parallelism was considered by Goldstein et. al. [16]. Their
“lazy-threads” concept addresses the issue that most thread-
ing models conflate logical parallelism and actual paral-
lelism. This semantics problem often requires that program-
mers tailor the expression of parallelism to the available par-
allelism, thereby forcing programmers to either require too
much overhead in low-parallelism situations or forgo the
full use of parallelism in high-parallelism situations.

The qthread API combines many of the advantages of
other threading models. The API allows parallelism to be

expressed independently of the parallelism used, much like
Goldstein’s lazy-thread approach. However, rather than re-
quire a customized compiler, the qthread API does this
within a library that uses two different categories of threads:
thread workers (shepherds) and stateful thread work units
(qthreads). This technique, while convenient, has overhead
that a compiler-based optional-inlining method would not:
every qthread requires memory. This overhead can be lim-
ited arbitrarily through the use of futures, which is a power-
ful abstraction to express resource limitations without lim-
iting the expressibility of inherent algorithmic parallelism.

7. Future work

Much work still remains in development of the qthread
API. A demonstration of how well the API maps to the
APIs of existing large scale architectures, such as the Cray
MTA/XMT systems, is important to reinforce the claim of
portability. Custom implementations for other architectures
would be useful, if not crucial.

Along similar lines, development of additional bench-
marks to demonstrate the potential of the qthread API and
large-scale multithreading would be useful for studying the
effect of large-scale multithreading on standard algorithms.
The behavior and scalability of such benchmarks will pro-
vide guidance for the development of new large-scale mul-
tithreading architectures.

Thread migration is an important detail of large scale
multithreading environments. The qthread API addresses
this with the shepherd concept, but the details of mapping
shepherds to real systems requires additional study. For ex-
ample, shepherds may need to have limits enforced upon
them, such as CPU-pinning, in some situations. The ef-
fect of such limitations on multithreaded application per-
formance is unknown, and deserving of further study.

8. Conclusions

Large scale computation of the sort performed by com-
mon computational libraries can benefit significantly from
low-cost threading, as demonstrated here. Lightweight
threading with hardware support is a developing area of re-
search that the qthread library assists in exploring while si-
multaneously providing a solid platform for lighter-weight
threading on common operating systems. It provides basic
lightweight thread control and synchronization primitives
in a way that is portable to existing highly parallel architec-
tures as well as to future and potential architectures. Be-
cause the API can provide scalable performance on existing
platforms, it allows study and modeling of the behavior of
large scale parallel scientific applications for the purposes
of developing and refining such parallel architectures.
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Abstract. This paper describes an application driven methodology for understanding the
impact of future architecture decisions on the end of the MPP era. Fundamental transistor
device limitations combined with application performance characteristics have created the switch
to multicore/multithreaded architectures. Designing large-scale supercomputers to match
application demands is particularly challenging since performance characteristics are highly
counter-intuitive. In fact, data movement more than FLOPS dominates. This work discusses
some basic performance analysis for a set of DOE applications, the limits of CMOS technology,
and the impact of both on future architectures.

1. Introduction
As the MPP era draws to a close, the energy ine�ciency of modern supercomputer architectures
is rapidly becoming the limiting factor for architectural scalability. The MPP era’s total reliance
on commodity processors that are optimized for less challenging application spaces has created
energy ine�ciencies throughout the system. Further, fundamental transistor device physics has
forced scaling in the form of increased parallelism at the chip level, rather than the exponential
increase in single thread performance that characterized the MPP era. Indeed, the transition to
multicore architectures is driven entirely by the aging of the CMOS fabrication process. Without
a well-defined successor capable of Moore’s Law scaling, the transistor limits the potential of
future supercomputers deployed in energy constrained environments. As a result, changes to
computer architecture are required to enable newer, more highly-scalable applications. However,
choosing the right architectural path is extremely di�cult. Generally, computer architects do
everything possible to hide the details of the hardware implementation from the programmer:
cache sizes, branch prediction policies, out-of-order execution mechanisms, and thread scheduling
at the hardware level are all examples of critical architectural mechanisms and structures that
are typically observed only indirectly by the programmer.

More worrisome still, each of these structures that architects use to boost single thread
performance and hide the depths and complexities of modern communication hierarchies
(memory or interconnect) consumes energy that could otherwise be available for the computation
if the programmer could exploit simpler, lighter-weight mechanisms. It has long been argued
that these mechanisms should be exposed to the programmer[9, 5, 1, 4], but the transition to
multithreaded/multicore architectures leaves little choice in an energy constrained environment.

This paper presents a synthesis of application analysis results derived from simulation,
analysis tools, and real hardware. The remainder of the paper is structured as follows: Section



2 discusses some of the applications studied in this work; Section 3 examines the limits of
CMOS transistors; Section 4 provides results to show that performance bottlenecks tend to be
latency and concurrency dominated; and Section 5 describes the impact of these trends on future
architectures.

2. Applications Discussed In This Work
The application studies referenced in this work are divided into two basic application classes:
physics codes, which tend to be floating point oriented; and informatics codes, which tend to
be more integer oriented. The full application analysis and simulation methodology has been
previously described[7, 6, 8]. The results are summarized in this paper.

2.1. Physics Applications
Broadly speaking, the physics application suite analyzed by Sandia are large-scale MPI
applications, and represent real world physical simulations. They are:

• ALEGRA is a finite element shock physics code capable of modeling near- and far-field
responses to explosions, impacts, and energy depositions.

• CTH is a multi-material, large deformation, strong shock wave, solid mechanics code
developed at Sandia National Laboratories over the last 30 years. CTH models multi-
phase, elastic viscoplastic, porous and explosive materials with multiple mesh refinement
methods.

• Cube3 Cube3 is a generic linear solver that drives the Trilinos framework for parallel
linear and eigensolvers. It mimics a finite element analysis problem by creating hexagonal
elements, then assembling and solving a linear system. The width, depth, and degrees of
freedom (e.g., temperature, pressure, velocity, etc.) can be varied.

• ITS performs Monte Carlo simulations of linear time-independent coupled electron/photon
radiation transport.

• MPSalsa is a high resolution 3d simulation of reacting flow. The simulation requires both
fluid flow and chemical kinetics modeling.

• Xyce is a parallel circuit simulation system capable of modeling very large circuits at
multiple layers of abstraction (device, analog, digital, and mixed-signal). It includes both
SPICE-like models and radiation models.

This suite of applications is somewhat more narrow than those of interest to the O�ce of
Science, but future work in the DOE Institute for Advanced Architecture will apply the same
fundamental analysis techniques to specific O�ce of Science applications.

2.2. Informatics Applications
Recently, new large-scale applications in the area of informatics have emerged as important
and substantially di�erent from physics applications that have been the core of supercomputing
over the past three decades. These applications tend to be more integer-oriented, and represent
problems in discrete math. They are typically less structured (in terms of memory access
patterns), and are often techniques used to analyze the output of a physical simulation, or to
examine real world data sets in an attempt to find patterns or form hypotheses. Additionally,
because Informatics applications tend to be less structured in nature, they are written using a
variety of programming models. The application set discussed are:

• DFS implements a depth-first search on a large graph and forms the basis for several
high-level algorithms including connected components, tree and cycle detection, solving the
two-coloring problem, finding Articulation Vertices, and topological sorting.



• Connected Components breaks a graph into components. Two vertices are in a
connected component if and only if there is a path between them.

• Subgraph Isomorphism determines whether or not a subgraph exists within a larger
graph.

• Full Graph Isomorphism determines whether or not two graphs have the same shape or
structure.

• Shortest Path computes the shortest path between two vertices using a breadth first
search. Real world applications include path planning and networking and communication.

• Graph Partitioning is used extensively in VLSI circuit design and adaptive mesh
refinement. The problem divides a graph in to k partitions while minimizing the cut between
the partitions (or the total weight of the edges that cross from one partition to another).

• BLAST is the Basic Local Alignment Search Tool and is the most heavily used method
for quickly search nucleotide and protein databases in biology.

• zCha� is a heuristic for solving the Boolean Satisfiability Problem. In propositional logic,
a formula is satisfiable if there exists an assignment of truth values to each of its variables
that make the formula true.

These applications have the potential to significantly change the methodology used in
computer-driven science, and fundamentally represent a new and disruptive use of high
performance computing resources.

3. CMOS Transistor Limitations
The switch to multicore is fundamentally driven by a change in the CMOS transistor that forms
the implementation technology for commodity processors. Power dissipation (manifesting itself
as heat which must be removed from the device) can be broken into two components: Static
Power Dissipation (Pstat), which is dissipated continuously while the circuit is powered and
Dynamic Power Dissipation (Pdyn) which is dissipated during switching. Although increasingly
important, static power dissipation cannot be addressed by the computer architect (other than
by powering o� parts of the machine not in use), and is primarily a function of the fabrication
process. It is defined as:

Pstat + IleakageVdd

Where Ileakage is the leakage current of the device, and Vdd is the voltage. It should be
noted that while the computer architect cannot do much to control leakage current, the system
architect and environment in which the machine is deployed can. At the junction, leakage is
generally caused by thermally generated carriers, and increases exponentially as temperature
rises. In fact, at 85�C, leakage current increases by a factor of 60 over room temperature values.
These factor and increased failure rates must be taken into account in the “hotter running”
compute environments that have become a topic of recent significant interest.

The majority of power dissipation is dynamic, and is defined as as:

Pdyn = CLV 2
ddf

Where CL is the capacitance of the entire circuit, Vdd the voltage, and f the switching
frequency (proportional to the clock frequency since not all devices will switch every cycle).
This equation is critically important in describing the switch to multicore.

Moore’s Law as originally defined demands an exponential increase in the number of
transistors, which increases CL. Specifically, for a given area, the total capacitance is the sum
of the capacitance of each device. Although capacitance per device decreases as the feature size



decreases (decreasing the individual transistor’s contribution to CL), the number of devices is
increasing exponentially. Similarly, until the multicore era the frequency increased substantially
in each generation. To keep the total dynamic power dissipation essentially constant (so that
chips could be cooled with relatively inexpensive heat syncs at roughly room temperature), the
equation was balanced by decreasing Vdd, which as it approaches 1 volt is nearing a fundamental
limit (in fact, the rate at which Vdd has decreased has already begun to flatten).

Although there are additional manufacturing benefits to moving to multicore architecture,
including simplifying the verification of designs, this fundamental technology limit is the real
driver. The devices are capable of higher clock rates, at higher densities, but engineering a
system to cope with the power dissipation is nearly impossible. The era is characterized as
an increasing bounty of transistors (Moore’s original observation), but the inability to increase
single thread performance (through faster clock rates). The inevitable result is more parallelism.

Of course the end of the CMOS scaling curve in the next decade or so will cause additional
fundamental physical limitations, unless a solution can be found.

4. Performance Bottlenecks Tend to Be Counterintuitive
The following section discusses basic application properties, and performance bottlenecks in the
network and memory system.

4.1. Real Floating Point Applications Do Less Floating Point Than Expected

Figure 1. Instruction Mix

The instruction mix for the Physics and Informatics suites is depicted in Figure 1, and
compared to the industry standard SPEC CPU 2000 suite. While SPEC FP averages
approximately one floating point instruction in three, real Sandia Physics codes average only 12%
(and is typically much less than 10%) because they exhibit more complex memory addressing
patterns, which, in turn require more integer instructions to calculate the addresses. In fact,
nearly 85% of integer instructions are calculating memory addresses, with the remaining 15%
split between real integer data and branch (boolean) support.

The Informatics applications are very di�erent from the Physics codes as well, suggesting the
possibility of two di�erent supercomputer architecture classes in the future. They perform 15%
fewer memory references, and those references are much more likely to miss the cache, which



stresses the memory subsystem. Additionally, the Informatics applications perform nearly twice
as many branches as their Physics counterparts, leading to relatively smaller basic blocks. (This
result is unsurprising due to the complex floating point calculations typically performed by the
Physics codes[9].) This combination makes the Informatics codes more di�cult to scale on
modern superscalar processors than their physics counterparts.

4.2. Latency and Concurrency Matter More than Bandwidth
Data movement systems are typically rated by bandwidth, but most evidence points to
applications being more sensitive to latency or concurrency. This can be simplistically described
by Little’s Law (from Economics) which says that:

throughput =
concurrency

latency

Particularly in the case of memory systems, increasing the number of memory requests
outstanding (currently limited by hardware and instruction sequences) or decreasing the latency
required to receive a response has significantly more impact than changing the bandwidth.

(a) (b)

Figure 2. Latency and Bandwidth Sensitivity for (a) Physics Applications and (b) Informatics
Applications

Figure 2 shows the change in Instructions Per Cycle (IPC, the computer architect’s typical
measure of performance) as relative latency and bandwidth are altered (the center bar being the
latency and bandwidth of a typical processor’s memory system. The full results and methodology
have been described previously[6]. The results demonstrate that both application suites are
significantly more sensitive to latency than bandwidth. A decrease in bandwidth by half on
either suites a�ects performance by less than 5%, while doubling the memory latency halves
performance1

1 It should be noted that this bandwidth measure is more strict than that presented for a typical memory part,
which will also include a decrease in latency in subsequent generations.



These result combined are confirmed by observations from performance counters and other
real system measurements going back to ASCI Red that demonstrates that real applications
have di�cult saturating the memory bus on a modern architecture because address generation
(the integer instructions discussed in Section 4.1) is the bottleneck more than typical memory
performance.

This is further demonstrated by typical out-of-order processors that are designed to mask
the multi-cycle latency of a Level 1 cache hit, more than the latency of a memory access (due
to limitations of both the incoming instruction stream and the implementation technology).

The performance of the two application suites is also significantly di�erent. The Physics
application achieve reasonable performance on the simulated out-of-order execution unit,
achieving an IPC of 1.22 for the base case. The processor is capable of retiring 4 instructions
per cycle, so the achieved IPC is approximately 30% of maximum. However, any IPC greater
than one is quite good for a typical application suite. In contrast, the baseline case for the
Informatics suite is only 0.70, indicating that the applications are significantly more memory
intensive, causing the processor additional idle time. Key graph algorithms, including both
isomorphism problems and connected components show IPCs significantly less than 0.5. Aside
from being less than an eighth of achievable performance, the results indicate that significant
power is being wasted on high clock rates for those applications.

Figure 3. Application Memory Performance Properties

Figure 3 describes the fundamental memory performance properties of each benchmark suite,
and has been fully described previously[7]. The spatial locality describes the probability that
data near previously referenced data will be referenced. The temporal locality describes the
probability that data already referenced will be reused. And the relative size of the dots
represents the amount of unique data that each application suite consumes over a fixed interval
of instructions. These fundamental application properties dictate the performance observed
in Figure 2, with applications consuming more data, and doing so in a more random fashion
(i.e., closer to the origin on the graph) showing similarly low performance in comparison to
applications with smaller data sets consumed in a more structured pattern. These fundamental
application properties determine the class of architecture required to provide high performance
at low power more than any other issue.



4.3. Network Performance
These issues are much more di�cult to measure for the network, but preliminary results and
prior experience show the importance of network injection rate vs. raw bandwidth.

Figure 4. Measurement of Bandwidth Restricted Performance on Red Storm. This is a recast
of data collected by Kurt Ferreira at Sandia, a subset of which is discussed in [3]

The trade-o� between latency, bandwidth, and message rates are di�cult to measure for
modern networks, and the trade-o�s appear to be highly application dependent. This state of
a�airs makes drawing firm conclusions on minimal network design di�cult, which may lead to
either poor application performance for a subset of applications or over-provisioned networks
for some subset of applications.

Figure 4 shows the e�ects of running three applications on Sandia’s Red Storm machine,
with bandwidth degraded in the mesh by 75%, while not degrading small message latency or
injection rate. The mesh is intentionally capable of approximately twice the bandwidth of
the link between processor and NIC to o�er more stable performance in the face of message
contention, whether from non-3D communication patterns or poor application and process
placement. The applications shown are CTH, SAGE, and POP. CTH and Sage were run at
2,048 nodes, and POP at 2,500. CTH and Sage were run with weak scaling data sets, and POP
as a strong scaling problem.

POP is limited by a combination of message rate and latency, and it is therefore not surprising
that reducing network bandwidth does not impact application performance. SAGE, like POP,
appears to be immune to bandwidth changes, although it is unclear whether this is problem
specific. CTH, on the other hand, shows a 27% performance degradation when mesh bandwidth
is reduced to half of injection bandwidth, and is traditionally thought to be insensitive to latency
and message rate. The di�erence between behavior of POP and CTH suggests a significant
challenge for hardware design – a need to balance hardware cost, energy usage, and performance
across a wide variety of applications.

In an energy optimized environment, one could envision a system that dynamically
scales network bandwidth performance to meet both application and overall system demands
(contention, I/O, etc.) when full topological bandwidth is not required for the current set of
running applications.



5. Impact on Future Architectures: Multicore, Multithreading
Section 3 described the fundamental technology changes pushing multicore processors. The
discussion of IPC in Section 4.2 shows that the processor is tremendously underutilized,
especially for applications with very large, sparse data sets. Because the problem is
fundamentally one of latency, there are only two basic solutions: avoiding the latency through
faster devices, memory hierarchies, and caches; or tolerating the latency via mechanisms such
as multiple outstanding loads, out-of-order execution, vector pipelines, or threads.

Avoiding latency via faster devices is fundamentally an economically and technologically
driven process, and often provides a “one time” benefit rather than a sustained and continuous
benefit over multiple generations. For example, cheap 3D integration of memory onto the
processor would reduce wire lengths between the processor and memory from centimeters to
microns, providing a one-time latency reduction.

Architectural techniques for avoiding latency such as caching also show diminishing returns.
Caches place frequently used items closer to the processor, but become less e�ective proportional
to cost as they increase in size. They are also large consumers of energy.

In terms of memory toleration, many of the classic techniques have reached their limits. Given
the relatively aggressive out-of-order execution in modern processors and the observed IPCs from
Figure 2, it is clear that there is not much room for improvement. In fact, most processors are
moving towards simpler latency toleration mechanisms because the power dissipation for out-of-
order execution is so high compared with the relatively small benefits. As discussed previously,
most applications fail to fully utilize memory system bandwidth, meaning that the problem
of generating more outstanding loads is not due to a hardware limitation, but fundamental
application properties. For the Informatics suite in particular, the pointer chasing requires the
results from one load to be available before another load can be generated, limiting architectural
options for solving the problem.

The remaining option for power-e�cient latency toleration is threads, and it can be seen in
the successes of early throughput-oriented architectures such as the Sun Niagara. Threads are:

• Relatively inexpensive to implement in hardware, requiring additional memory structures
to support larger register files, but not requiring complex logic as is required for out-of-order
execution;

• E�cient in that switching to another thread while the currently executing thread waits on
a long latency event still allows “useful” work to be performed during the idle time (in
contrast with techniques such as speculative execution which simply create heat when the
architecture predicts an erroneous path of execution);

• Low power, primarily because useful work is always being done and they replace more
complex hardware structures;

• Capable of fully utilizing the memory system by exposing more address generation streams
to the programmer (if the programmer can exploit them), which can be seen in the trend
toward fewer memory controllers per core in modern processors; and,

• Potentially plentiful, in that for the desktop and server space for which the processors
are optimized there typically exists su�cient parallelism (even at the task level) to allow
for multithreaded processors not to starve, which is potentially a significant application
problem for future supercomputers.

Consequently, the trend towards multicore/multithreaded architectures is inevitable,
especially in highly energy constrained environments. The DARPA Exascale Report[2] describes
dominance of data movement in future exascale architecture energy budgets.
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1. Introduction

Graph-based Informatics applications challenge tradi-
tional high-performance computing (HPC) environments
due to their unstructured communications and poor load-
balancing. As a result, such applications have typically been
relegated to either poor efficiency or specialized platforms,
such as the Cray MTA/XMT series. The multi-threaded
nature of the Cray MTA architecture1 presents an ideal
platform for graph-based informatics applications. As com-
modity processors adopt features to enable greater levels of
multi-threaded programming and higher memory densities,
the ability to run these multi-threaded algorithms on less
expensive, more available hardware becomes attractive.

The Cray MTA architecture provides both an auto-
threading compiler and a number of architectural features to
assist the programmer in developing multi-threaded applica-
tions. Unfortunately, commodity processors have increased
the amount of concurrency available by adding an ever-
growing number of processor cores on a single socket, but
have not added the fine-grained synchronization available
on the Cray MTA architecture. Further, while auto-threading
compilers are being discussed, none provide the feature set
of the Cray offerings.

Although massively multi-threaded architectures have
shown tremendous potential for graph algorithms, devel-
opment poses unique challenges. Algorithms typically use
light-weight synchronization primitives (Full/Empty bits,
discussed in Section 3.1) for synchronization. Parallelism
is not expressed explicitly, but instead compiler hints and
careful code construction allow the compiler to parallelize
a given code. Unlike the Parallel Boost Graph Library
(PBGL) [8], which runs on the developers laptop as well
as the largest supercomputers, applications developed for
the MTA architecture only run on the MTA architecture.
Experiments with the programming paradigm require access
to the platform, which is obviously a constrained resource.

In this paper, we explore the possibility of using the
Qthreads user-level threading library to increase the porta-
bility of scalable multi-threaded algorithms. The Multi-

1. Throughout this paper, we will use the phrase MTA architecture to
refer to Cray’s multi-threaded architecture, including both the Cray MTA-2
and Cray XMT platforms.

Threaded Graph Library (MTGL) [2], which provides
generic programming access to the XMT, is our testbed for
this work. We show the use of important algorithms from the
MTGL on on emerging commodity multi-core and multi-
threaded platforms, with only minor changes to the code
base. Although performance is not at the same level as the
same algorithm on a Cray XMT, the performance motivates
our technique as a workable solution for developing multi-
threaded codes for a variety of architectures.

2. Background

Recent work [9], [12] has described the challenges in
HPC graph processing. These challenges are fundamentally
related to locality (both spatial and temporal), and the
lack thereof when graph algorithms are applied to highly
unstructured datasets. The PBGL [8] attempts to meet these
challenges through storage techniques that reduce commu-
nication. These techniques have been shown to work well in
certain contexts, though they introduce other challenges such
as memory scalability. Even when they achieve run-time
scalability, the processor utilization on commodity CPUs is
considerably lower than that found in the MTA architecture.

2.1. Cray XMT

The Cray XMT is the successor to the Cray MTA-2 highly
multi-threaded architecture. Unlike the MTA-2, in which all
memory was equidistant from any processor on the network,
the XMT uses a more traditional model in which memory
is closer to a single processor than all others. The Cray
XMT utilizes similar processors to the MTA-2, including
the ability to sustain 128 simultaneous hardware threads,
but with an improved 500 MHz clock rate. Rather than the
custom network found on the MTA-2, the XMT utilizes the
SeaStar based network found on the Cray XT massively
parallel processor distributed memory platform.

2.2. Multi-core Architectures

As processor vendors have begun offering quad-core
processors, as well as more commodity multi-threaded pro-
cessors such as the Sun Niagara processors, it has become



possible to write multi-threaded applications on more tra-
ditional platforms. Given the high cost of even a small
XMT platform, the ability of modern workstations to support
a growing number of threads makes them attractive for
algorithm development and experimentation.

The Sun Niagara platform opens even greater multi-
threaded opportunities, supporting 8 threads per core and 8
cores per socket, for a total of 64 threads per socket. Current
generation Niagara processors support single, dual, and quad
socket installations. Unlike the Cray XMT, the Sun Niagara
uses a more traditional memory system, including L1 and
shared L2 cache structures, and an unhashed memory sys-
tem. The machines are also capable of running unmodified
UltraSPARC executables.

2.3. Multi-threaded Programming

Our approach is to take algorithm codes that have already
been carefully designed to perform on the MTA architec-
ture, and run them without altering the core algorithm on
commodity multi-core machines by simulating the thread-
ing hardware. In contrast, codes written using frameworks
specifically designed for multi-core commodity machines
(e.g. SWARM [13]) won’t run on the MTA architecture.

Standard multi-core software designs, such as Intel’s
Thread Building Blocks [10], OpenMP [6], and Cilk [3], tar-
get current multicore systems, and their architecture reflects
this. For example, they lack a means of associating threads
with a locale. This becomes a significant issue as machines
get larger and memory access becomes more non-uniform.

Another important consideration is the granularity and
overhead of synchronization. Existing large scale multi-
threaded hardware, such as the XMT, implement full/empty
bits. This provides for blocking synchronization in a locality-
efficient way. Existing multi-threaded software systems tend
to use lock-based techniques, such as mutexes and spinlocks,
or require tight control over memory layout. These methods
are logically equivalent, but are not as efficient to implement.
FEB’s are memory efficient when implemented in hardware,
and thus allow tight memory structures that can be safely
operated upon without requiring locking structures to be
inserted into them.

3. Qthreads

The Qthread API [16] is a library-based API for accessing
lightweight threading and synchronization primitives similar
to those provided on the MTA architecture. The API was
designed to support large-scale lightweight threading and
synchronization in a cross-platform library that can be
readily implemented on both conventional and massively
parallel architectures. On architectures where there is no
hardware support for the features it provides, or where
native threads are heavyweight, these features are emulated.

There are several existing threading models that support
lightweight threading and lightweight synchronization, but
none that sufficiently closely emulate the MTA architecture
semantics.

Equivalents for basic thread control, FEB-based read and
write functions, as well as basic threaded loops (analogs
for many of the pragma-defined compiler loop optimizations
available on the MTA architecture) are all provided by the
API. Even though the operations that do not have hardware
support, such as FEB-based operations, are emulated, they
retain usefulness as a means of intra-thread communication.

The API establishes convenient management of the basic
memory requirements of threads as they are created. When
insufficient resources are available, either thread creation
fails or it waits for the resources to become available,
depending on how the API is used.

Relatively speaking, locality of reference is not an impor-
tant consideration to the MTA architecture, as the address
space is hashed and divided among all processors at word
boundaries. This is an unusual environment, and locality
is an important consideration in most other large parallel
machines. To address this, the Qthread API provides a
generalized notion of locality, called a “shepherd”, which
identifies the location of a thread. A machine may be
described to the library as a set of shepherds, which can
refer to memory boundaries, CPUs, nodes, or whatever is a
useful division. Threads are assigned to specific shepherds
when they are created.

3.1. Implementation of MTA Intrinsics

The MTA architecture has several features that are intrin-
sic to the architecture, which the Qthread library emulates.
These features include full/empty bits (FEBs), fast atomic
increments, and conditionally created threads.

On the MTA architecture, a full/empty bit (FEB) is an
extra hardware flag associated with every word in memory,
marking that word either full or empty. Qthreads uses a cen-
tralized collection data structure to achieve the same effect:
if an address is present in the collection, it is considered
“empty”, and if not, it is considered “full”. Thus, all memory
addresses are considered full until they are operated upon by
one of the commands that will alter the memory word’s con-
tents and full/empty status. The synchronization protecting
each word is pushed into the centralized data structure. Not
all of the semantics of the MTA architecture can be fully
emulated, however. For example, on the MTA architecture,
all writes to memory implicitly mark the corresponding
memory words as full. However, when pieces of memory
are being used for synchronization purposes, even implicit
operations are done purposefully by the programmer, and
replacing implicit writes with explicit calls is trivial.

The MTA architecture also provides a hardware atomic
increment intrinsic. Atomic increment functions have often



been considered useful, even on commodity architectures,
and so hardware-based techniques for doing atomic incre-
ments are common. The Qthread API provides an atomic
increment function that uses a hardware-based implementa-
tion on supported architectures, but which falls back to using
emulated locks to achieve the same behavior on architectures
without explicit hardware support in the library. This is an
example of opportunistically using hardware features while
providing a standardized interface; a key feature of the
Qthread API.

3.2. Qthreads implementation of thread virtualiza-
tion

Conditionally created threads are called “futures” in MTA
architecture terminology, and are used to indicate that
threads need not be created now, but merely whenever there
are resources available for them. This can be crucial on the
MTA, as each processor can handle at most 128 threads,
and extremely parallel algorithms may generate significantly
more. The Qthread API provides an analogous feature by
providing alternate thread creation semantics that allow the
programmer to specify the permissible number of threads
that may exist concurrently, and which will stall thread
creation until the number of threads is less than the number
of permissible threads.

A key application of this is in loops. While a given loop
may have a large number of entirely independent iterations,
it is typically unwise to spawn all of the iterations as
threads, because each thread has a context and eventually
the machine will run out of memory to hold all the thread
contexts. Limiting the number of concurrently extant threads
limits the amount of overhead that will be used by the
threads. In a loop, the option to stall the thread creation
while the maximum number of threads still exist provides
the ability to specify a threaded loop without the risk of
using an excessive amount memory for thread contexts. The
limit on the number of threads is a per-shepherd limit, which
helps with load balancing.

4. The Multi-Threaded Graph Library

The Multi-Threaded Graph Library is a graph library
designed in the spirit of the Boost Graph Library (BGL)
and Parallel Boost Graph Library. The library utilizes the
generic component features of the C++ language to allow
flexibility in graph structures, without changes to a given
algorithm. Unlike the distributed memory, message passing
based PBGL, the MTGL was designed specifically for
the shared-memory multi-threaded MTA architecture. The
MTGL includes a number of common graph algorithms,
including the breadth-first search, connected components,
and PageRank algorithms discussed in this paper.

To facilitate writing new algorithms, the MTGL provides
a small number of basic intrinsics upon which graph al-
gorithms can be implemented. The intrinsics hide much
of the complexity of multi-threaded race conditions and
load-balancing from algorithm developers and users. Parallel
Search (PSearch), a recursive parallel variant of depth-first
search (which is not truly depth-first in order to achieve
parallelism), combined with an extensive vertex and edge
visitor interface, provides powerful parallelism for a number
of algorithms.

MTA architecture-specific features used by the MTGL are
either compiler hints specified via the #pragma mechanism
or are encapsulated into a limited number of templated
functions, which are easily re-implementable for a new
architecture. An example is the mt_readfe call, which
translates to readfe on the MTA architecture, a simple
read for serial builds on commodity architectures, and
qthread_readfe on commodity architectures using the
Qthreads library.

The combination of an internal interface for explicit
parallelism and the set of core intrinsics upon which much of
the MTGL is based provides an ideal platform for extension
to new platforms. While auto-threading compilers like those
found on the MTA architecture are not available for other
platforms, the small number of intrinsics can be hand-
parallelized with a reasonable amount of effort.

5. Qthreads and the MTGL

Making the MTGL into a cross-platform library required
overcoming significant development challenges. The MTA
architecture programming environment has a large number
of intrinsic semantics, and its cacheless hashed memory
architecture has unusual performance characteristics. The
MTA compiler also recognizes common programming pat-
terns, such as reductions, and optimizes them transparently.
For these reasons, the MTA developer is encouraged to
develop “close to the compiler”.

The size of stack necessary, for example, presents a
challenge. Some MTGL routines are highly recursive, and
the MTA transparently handles expanding the stack for each
thread as-needed. The Qthread library, however, has a fixed
stack size. Iterative solutions, combined with using larger
stacks was required to address the issue.

Both the MTA architecture and commodity processors
are susceptible to the problem of hot spotting, performance
degradation due to repeated access to the same memory
location. The MTA architecture suffers from both read
and write hot spotting, due to constraints in traffic across
the platform’s network. Commodity processors, however,
provide cache structures to improve performance and benefit
from read hot spotting. Commodity architectures also have
a larger granularity of memory sharing: a cache line, which
can be as large as 64 bytes. Concurrent writes within a cache



line create a hot spot, even if the writes affect independent
addresses. The cache was a consideration for atomic op-
erations as well, as they typically cause a cache flush to
memory. Avoiding atomic operations where possible, such
as in reductions, is important for performance.

6. Multi-platform Graph Algorithms

We consider three graph kernel algorithms: a search, a
component finding algorithm, and an algebraic algorithm.
There are myriad other graph algorithms, but we use these
three as primitive representatives on which other algorithms
can be built.

6.1. BFS

Breadth-first search (BFS) is, perhaps, the most funda-
mental of graph algorithms. Given a vertex v, find the
neighbors of v, then the neighbors of those neighbors, etc.
Furthermore BFS is well-suited for parallelization. Pseu-
docode for BFS from [5] is included in Figure 1.

BFS(G,s)
1 for each vertex u � V [G] � {s}
2 do color[u] � WHITE
3 d[u] � inf
4 color[s] � GRAY
5 d[s] � 0
6 Q � �
7 while Q �= 0
8 do u � DEQUEUE(Q)
9 for each vertex v � Adj[u]
10 do if color[v] � WHITE
11 then color[v] � GRAY
12 d[v] � d[u] + 1
13 ENQUEUE(Q, v)
14 color[v] � BLACK

Figure 1. The basic BFS algorithm

There are two inherent problems with using this basic
algorithm in a multithreaded environment. The first is that
a parallel version of the for loop beginning on Line 9 will
make many synchronized writes to the color array. This is a
problem on machines like the Niagara regardless of the data
characteristics. It is also a problem on the XMT if there is
a vertex v of high in-degree (since many vertices u would
test v’s color simultaneously, making it a hot spot).

The second problem is even more basic: the ENQUEUE
operation of Line 13 typically involves incrementing a tail
pointer. As all threads will increment this same location, it
is an obvious hot spot.

We avoid these problems by chunking and sorting: sup-
pose that the next BFS level contains k vertices, whose
adjacency lists have combined length l. We divide the work
of processing these adjacencies into �l/C� chunks, each of

size C (except for the last one). Then �l/C� threads process
the chunks individually, saving newly discovered vertices
to local stores. Each thread can then increment the Q tail
pointer only once, mitigating that hot spot. However, in order
to handle the color hot spot, we do not write the local
stores directly into the Q. Rather, we concatenate them into
a buffer, sort that buffer with a thread-safe sorting routine
(qsort in Qthreads, or a counting sort on the XMT), then
have a single thread put the unique elements of this array into
the Q. This thread does linear work in serial, but the “hot
spot” is now used to advantage in cache-based multicore
architectures.

A better BFS algorithm is known for the XMT. Although
we currently do not have an implementation of this algo-
rithm, it would be a straightforward exercise to incorporate
it into the MTGL so that the same program could run
efficiently on either type of platform.

6.2. Connected Components

A connected component of a graph G is a set S of
vertices with the property that any pair of vertices u, v � S
are connected by a path. Finding connected components
is a prerequisite for dividing many graph problems into
smaller parts. The canonical algorithm for finding connected
components in parallel is the Shiloach-Vishkin algorithm
(SV) [15], and the MTGL has an implementation of this
algorithm that roughly follows [1].

Unfortunately, a key property of many real-world datasets
will limit the performance of SV in practice. Specifically, it
is known both theoretically [7] (for random graphs), and
in practice (for interaction networks such, the World-Wide
Web, and many social networks) that the majority of the ver-
tices tend to be grouped into one “giant component” (GCC).
Algorithms like SV work by assigning a representative to
each vertex. Toward the end of these algorithms, all vertices
in the GCC are pointing at the same representative, making
it a severe hot spot.

We adopt a simple alternative to SV, which we call
GCC-SV. It is overwhelmingly likely (though we do not
not provide any formal analysis here) that the vertex of
highest degree is in the GCC. Given this assumption, we
BFS from that vertex using the method of Section 6.1 (or
psearch on the XMT), then collect all orphaned edges that
do not link vertices discovered during this search. Running
SV on the subgraph induced by the orphaned edges we find
the remaining components. This subproblem is likely to be
small enough so that even if the largest component of the
induced subgraph is a GCC of that graph (which is likely),
the running time is dwarfed by that of the original BFS. If
there is no GCC in the original graph, then the original SV
would perform well.



6.3. PageRank

#pragma mta assert nodep
for (int i=0; i<n; i++) {

double total=0.0;
int begin = g[i];
int end = g[i+1];
for (int j=begin; j<end; j++) {

int src = rev end points[j];
double r = rinfo[src].rank;
double incr = (r/rinfo[src].degree);
total += incr;

}
rinfo[i].acc = total;

}

Figure 2. The MTGL code for PageRank’s inner loop on
the XMT

PageRank, the algorithm made famous by Google for
ranking web pages [14], is a linear algebraic technique
for modeling the propagation of votes through a directed
graph, where each page contributes a fraction of its vote
to each of its out-neighbors. Ranks continue propagating
until convergence. A thorough mathematical explanation of
PageRank is beyond the scope of this paper. However, at
an abstract level PageRank is a sequence of matrix-vector
multiplications, each followed by a normalization step. In
graph terms, the most computationally expensive portion of
the algorithm is simply traversing all of the adjacencies in
the graph in order to accumulate votes.

Figure 2 shows the vote accumulation loops of PageRank
used by the MTGL on the XMT. The structure of these
loops enables the XMT compiler to merge them into one,
and to remove the reduction of votes into the variable total
from the final line of the inner loop. The result is excellent
performance. We simulate this in a Qthread-enabled version
of this code in the MTGL in order to achieve good scaling
on multi-core machines.

6.4. R-MAT graphs

R-MAT [4] is a parameterized generator of graphs that can
mimic real-world datasets. The term stands for “Recursive-
MATrix,” derived from the generation procedure, which is
a simulation of repeated Kronecker products [11] of the
adjacency matrix by itself. Intuitively, the R-MAT procedure
can be thought of as repeatedly dropping marbles through a
series of plastic trays. The topmost one typically is divided
into 4 quadrants, the second one into 16, etc. The bottom tray
is the adjacency matrix. At each level, a marble will pass
through one of 4 holes with probability given by 4 input
parameters; a, b, c, d. Multiple edges are not allowed, so if

a marble ends up on top of another marble in the adjacency
matrix, it is discarded and we try again.

Varying the parameters a, b, c, d determines much about
the structure of the resulting graph. For example, using
a = 0.25, b = 0.25, c = 0.25, d = 0.25 would generate an
Erdös-Rényi random graph. Putting more weight on one of
the quadrants tends to generate an inverse power-law degree
distribution, which is found in many real datasets.

In our experiments we generate two different classes of
R-MAT graphs:

• nice graphs have a = 0.45, b = 0.15, c = 0.15, d =
0.25. These graphs feature two natural communities at
each of many levels of recursion (quadrants a and d).
However, even in graphs a quarter of a billion edges,
the maximum vertex degree is only roughly a thousand.

• nasty graphs have a = 0.57, b = 0.19, c = 0.19, d =
0.05. These feature a much steeper degree distribution,
with a maxmimum degree of roughly 200,000 in our
quarter-billion edge example. Load balancing would
naturally be more challenging in this case.

Furthermore, we label our graphs with the exponent of the
number of vertices and hold the average degree at a constant
16, since this is relatively close to (though an over-estimate
of) the average degree of a page in the WWW. For example,
graph “R-MAT 21 Nasty” has 221 vertices, 224 undirected
edges, and R-MAT parameters as given above.

7. Multiplatform Experiments

We compare performance of the three graph kernel al-
gorithms described in Section 6—breadth-first search, con-
nected components, and PageRank—on three platforms ca-
pable of executing multiple threads simultaneously: the Cray
XMT, the Sun Niagara T2, and a traditional multi-socket,
multi-core platform.

The Cray XMT used in testing contains 64 500 MHz
ThreadStorm processors, each capable of sustaining 128
simultaneous hardware threads and 500 GB of shared mem-
ory. The SeaStar based network is a 3-d torus in a 8x4x2
configuration. The system was running version 6.2.1 of the
XMT operating system.

A Sun SPARC Enterprise T5240 server, with two 1.2 GHz
UltraSPARC T2 processors, each capable of sustaining 64
simultaneous hardware threads, was also used in testing. The
system contains 128 GB of memory and was running Sun
Solaris 10, 5/08 Release. The Sun CoolThreads version of
GCC was used to compile all tests.

Finally, a quad-socket, quad-core Opteron system, clocked
at 2.2 GHz, provides a traditional multi-core environment.
The system provides 32 GB of memory and is running Red
Hat EL 5.1. GCC 4.1.2 was used to compile all tests.
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Figure 4. Niagara T2 Breadth-First Search

7.1. Breadth-First Search

We find that our method of avoiding hot spots in BFS
enables scaling beyond what would be achievable by a naive
algorithm. At the time of this writing, our implementation
runs on the XMT, but does not perform as well as native
XMT BFS implementations have done in the past. However,
our method does leverage the multi-core and Niagara plat-
forms effectively. As implied before, MTGL programmers
will run BFS by associating a visitor object with the kernel
algorithm, then running the latter. Underlying differences
in the kernel implementation, such as that likely in the
XMT implementation of BFS, will be hidden from the
programmer.

7.2. Connected Components

Our connected components codes demonstrate strong scal-
ing on multi-core and Niagara, as the GCC-SV algorithm is
dominated by a single run of BFS on the realistic datasets
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Figure 5. Opteron Connected Components GCC-SV
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Figure 6. Niagara T2 Connected Components GCC-SV
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we address. Furthermore, we are able to demonstrate strong
scaling on the XMT as well by replacing the BFS by the
recursive psearch. Note the effect of data on algorithm
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Figure 9. Niagara T2 PageRank

performance in Figure 7. Ironically, the “nasty” datasets are
most friendly to the algorithm, as the vast majority of all
vertices fall into the GCC in this case. As we consider
the “nice” datasets, this GCC membership becomes less
pathological (and less realistic). Therefore, the inherently
hot spotting SV algorithm has more work to do once the
GCC has been processed.

7.3. PageRank

As we saw in Figure 2, PageRank can be written to
leverage the auto-parallelizing compiler of the XMT quite
effectively. We cannot match the XMT’s performance in
emulation without work to reconstruct the compiler’s op-
timization. However, a straightforward parallelization of the
outer loop using qthreads still provides significant benefit,
as we see in Figures 8 and 9.
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8. Conclusions and future work

Developing multi-threaded graph algorithms, even when
using the MTGL infrastructure, provides a number of chal-
lenges, including discovering appropriate levels of paral-
lelism, preventing memory hot spotting, and eliminating
accidental synchronization. In this paper, we have demon-
strated that using the combination of Qthreads and MTGL
with commodity processors enables the development and
testing of algorithms without the expense and complexity
of a Cray XMT. While achievable performance is lower for
both the Opteron and Niagara platform, performance issues
are similar.

While we believe it is possible to port Qthreads to the
Cray XMT, this work is still on-going. Therefore, porting
work still must be done to move algorithm implementations
between commodity processors and the XMT. Although it
is likely that the Qthreads-version of an algorithm will not
be as optimized as a natively implemented version of the
algorithm, such a performance impact may be an acceptable
trade-off for ease of implementation.
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Figure 2. System Topologies
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!*/'()0%1#'5%*#+,* /34 5 C2.)/=$ 5 ?$=F$$3 5 0($:($)40 5 F2=(

!*/'()0%647')*(%*#+,& HG:#272= 5 C2.)/=2,3 5 .-/)/3=$$0 5 =(/=

=()$/4057/33,=5$G$7-=$5235-3$G:$7=$45:#/7$0& ;-7(57,3=),#

:)$A2,-0#"5)$E-2)$45=($5-0$5,B5:#/=B,)CN0:$72^75#2?)/)2$05/34

($/A"F$2.(=5=()$/40& 1($5420=/37$5?$=F$$350($:($)405C/"

?$54$=$)C23$45-023.5=($ !*/'()0%04.*)3&(+, B-37=2,3&

I> !%#%''(')%#-91$(-$3#(0

;$A$)/# 5 42BB$)$3= 5 0"0=$C0 5F2=( 5 4)/C/=27/##" 5 42BB$)$3=

=,:,#,.2$05/)$5-0$45=,54$C,30=)/=$5-023.5=,:,#,."5=,523B,)C

)-3=2C$54$7202,30d /54-/#N:),7$00,)54-/#N7,)$5M3=$#5l$,3

RVRY5F,)J0=/=2,3* /5[]N:),7$00,)5;oM D#=2G5_hYY577<@9D

;9X*5/345/54-/#N:),7$00,)5VaN7,)$5;-35<2/./)/ S50$)A$)&

1($0$5C/7(23$05F$)$50$#$7=$45=,54$C,30=)/=$5=()$$542BB$)N

$3=5=":$05,B5:/)/##$#50"0=$C0d /57,CC,354$A$#,:C$3=5F,)JN

0=/=2,3* /5#/).$577<@9D 0"0=$C* /345/5C/002A$#"5C-#=2N

=()$/4$457(2:5/)7(2=$7=-)$& 1($5=,:,#,."5,B5$/7(5,B5=($0$

C/7(23$052052##-0=)/=$45235f2.-)$ S&
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0,)0& 1($53,4$05/)$57,33$7=$45?"54-/#5_&S5o%k05-3242)$7N
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Figure 3. Multithreaded 44-byte memory allocations/sec, 100-million allocations.

5.1. Distributed memory pool

9$C,)"5/##,7/=2,35205/5B)$E-$3=#"5,A$)#,,J$454$=/2#5=(/=

7/3502.32^7/3=#"52C:/7=5:$)B,)C/37$& ;=/34/)45C$C,)"5/#N

#,7/=2,35#2?)/)2$05/)$5=":27/##"54$02.3$45B,)5.$3$)/#N:-):,0$

/##,7/=2,35235023.#$N=()$/4$45/::#27/=2,30* ?/#/3723.5/##,7/N

=2,350:$$45F2=(5#2C2=23.5B)/.C$3=/=2,3* F2=(,-=57,37$)35B,)

#,7/#2="& 9$C,)"5#,7/#2="5205=":27/##"50:$72^$45:$)N:/.$5/34

3$$405/35/?0=)/7=2,35B,)5.$3$)/#N:-):,0$5-0$&

D 0$=5,B5C$C,)"5:,,#05F2=(5C-=$G$05=,5:),A24$5=()$/4N

0/B$5/77$005205B-37=2,3/#* ?-=50-BB$)05B),C5(2.(5C-=$G5,A$)N

($/4& 1($5E=()$/45C$C,)"5:,,#* E:,,#* 2052C:#$C$3=$45/0

/50$=5,B5#,7/=2,3N0:$72^75#,7JNB)$$50=/7J05F(27(5:),A24$5B/0=

/77$005=,5#,7/#5C$C,)"& 1,:,#,."523B,)C/=2,35205-0$45=,

:-##5C$C,)"5B),C53$/)?"5C$C,)"5:,,#05F($353$7$00/)"&

D E:,,#52057)$/=$45A2/ !"##$%&'()*(+,& W37$57)$/=$4* $#N

$C$3=057/35?$5B$=7($45B),C5=($5:,,#5F2=( !"##$%)$$#&+, /34
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?" !"##$%0(.*'#-+,& H/7(5/##,7/=2,35205:-##$45B),C5=($5#,7/#
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-0$05/4/:=2A$5/)$3/5/##,7/=2,35=,507/#$& 1($5;,#/)205C/#N

#,75#2?)/)"* 4$02.3$45B,)50$)2/#5/::#27/=2,30* 205-32B,)C#"

0#,F& ;,#/)20Z0 5C-#=2=()$/4$45C=C/##,7 5 #2?)/)" 5:),A24$0

?$==$)5:$)B,)C/37$5B,)5)$#/=2A$#"5#,F53-C?$)05,B5=()$/40*

?-=54,$053,=5/::$/)5=,5?$54$02.3$45B,)5C,)$5=(/3502G=$$3

=()$/405/3457/35,3#"5/##,7/=$5?#,7J05235:,F$)N,BN=F,502`$0&

5.2. Distributed array

1($5420=)2?-=$45/))/"* ,)5E/))/"* -0$05/5?/0275i?#,7J$4j
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=()$$5/0:$7=05,B5=(2054$02.3d 0$.C$3=5420=)2?-=2,35:/==$)3*

0$.C$3=502`$* /345$#$C$3=502`$& 1($5E/))/"5420=)2?-=$052=0

C$C,)"5F($357)$/=$4* A2/ !)'')-%&'()*(+,& W37$57)$/=$4* $#$N

C$3=05F2=(235=($5/))/"57/35?$5/77$00$45F2=( !)'')-%($(6+,* ,)
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420=)2?-=$05)/34,C#"* /345i+20=56$.5f2$#40j57#-0=$)050$E-$3N
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:/==$)3* ?-=50$)A$05=,57,C:/)$5=($5420=)2?-=2,35:/==$)305F2=(

=":27/#53,3NE/))/"5/))/"52=$)/=2,3&

M=5205F,)=(53,=23.5=(/=5:/)/##$#52=$)/=2,3507/#$05F$##5,3
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Figure 4. Impact of distribution pattern on multithreaded memory bandwidth over large arrays.
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Figure 5. Impact of segment size and distribution pattern on multithreaded memory bandwidth over
100-million element arrays.
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=(/350$)2/#5 2=$)/=2,35,35=($5<2/./)/ S& M=$)/=2,35F2=(5_S

3,4$05F/05_V&SG5B/0=$)5=(/350$)2/#52=$)/=2,35,35=($5D#=2G& 1($

l$,35F,)J0=/=2,35:$/J$45/=5S&VG5B/0=$)5=(/350$)2/#5,:$)/=2,3*

#2J$#"5?$7/-0$5=($)$5/)$5,3#"5=F,5C$C,)"57,3=),##$)0* 7,CN
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?-=2,35.)/3-#/)2="* ,)5i0$.C$3=502`$&j 9,0=5#,7/#2="N/F/)$

C$C,)"5/##,7/=2,35C$=(,405,:$)/=$5,35:/.$N02`$5C$C,)"

?#,7J0* =($)$?"54$^323.5=($5C232C-C50$.C$3=502`$& 1(-0*

,3#"5#/).$5/))/"057/35?$5$B^72$3=#"5420=)2?-=$4* /345=($50$.N

C$3=502`$5205/5C-#=2:#$5,B5=($5:/.$502`$& f2.-)$ R 2##-0=)/=$0
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<2/./)/ S50$)A$)* F(2#$5=($5?$0=5:$)B,)C23.50$.C$3=502`$

B,)5+20=56$.5f2$#405:),A24$05/5S&SG52C:),A$C$3=5,A$)5=($

F,)0=5:$)B,)C23.502`$& 1($50=/=275(/0(5420=)2?-=2,35:),A24$4

=($5?$0=50C/##50$.C$3=502`$5:$)B,)C/37$5,B5=($5420=)2?-=2,3

C$=(,405=$0=$4n ,=($)5C$=(,4053$$45C-#=2:#$5:/.$05=,5C/0J
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Figure 6. Impact of alignment on multithreaded memory bandwidth over million-element arrays.
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Figure 7. The ops/sec of strictly ordered multithreaded queues.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

 1  2  4

O
pe

ra
tio

ns
 p

er
 S

ec

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue
Intel TBB Queue

+&, ;%1*

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06
1e+07

 1  2  4  8  16  32

O
pe

ra
tio

ns
 p

er
 S

ec

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue
Intel TBB Queue

+>, =.")?

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

 1  2  4  8  16  32  64  128

O
pe

ra
tio

ns
 p

er
 S

ec

Number of Threads
Qthread Dist. Queue (Affinity)

Qthread Dist. Queue

+7, @)&5&$&<A

Figure 8. The ops/sec of end-to-end ordered multithreaded queues with small elements.
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Figure 9. The ops/sec of end-to-end ordered multithreaded queues with large (1024 byte) elements.
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